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Abstract:

Multi-modal Medical Image Fusion (MMIF) is an advancing field at the intersection of medical imaging, data science,
and clinical diagnostics. It aims to integrate complementary data from various imaging modalities, such as MRI, CT,
and PET, into a single, diagnostically superior composite image. The limitations of unimodal imaging, such as low
spatial resolution, insufficient contrast, or incomplete functional characterization, have catalyzed the development of
MMIF techniques to enable enhanced visualization, precise diagnosis, and personalized therapeutic planning. This
review provides a comprehensive synthesis of the MMIF landscape, categorizing methodologies into five principal
domains such as spatial, frequency-based, sparse representation, deep learning, and hybrid approaches. Each
technique is critically evaluated for its advantages, limitations, and applicability in clinical settings. Preprocessing,
registration, fusion execution, and validation are covered in this review, along with levels of fusion pixel, feature, and
decision. The study reviews prominent public databases, including TCIA, OASIS, ADNI, MIDAS, AANLIB, and DDSM,
comparing their imaging modalities, disease coverage, file formats, and accessibility. The evaluation of MMIF
techniques is systematically addressed, providing a framework for objective performance assessment. An
experimental setup is implemented on two datasets to assess the comparative efficacy of selected MMIF techniques
utilizing quantitative evaluation variables such as SSIM, entropy, spatial frequency, and mutual information. The
results highlight the effectiveness of hybrid and deep learning-based approaches in maintaining both anatomical
detail and functional consistency across modalities. The review explores MMIF’s real-world clinical applications,
including image-guided neurosurgery, spinal planning, stereotactic radiosurgery, orthopedic implant design, and
oncology diagnostics. It also provides insights into future directions, such as explainable Al, federated learning, and
integration with robotic surgeries. MMIF offers immense potential yet has limitations like registration errors,
computational burdens, generation of artifacts, loss of specific information, and a lack of standardized evaluation
metrics. Essentially, the study provides an analytical basis for healthcare experts, scientists, and engineers aiming to
develop clinically scalable MMIF systems, which will become indispensable tools for improving diagnostic accuracy,
treatment planning, and patient outcomes in modern healthcare.

Keywords: Multimodal medical image fusion, Spatial, Deep learning, Sparse representation, Transform, Hybrid
fusion techniques.

© 2025 The Author(s). Published by Bentham Open.
This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public
License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license @ CrossMark
permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are
credited.
Received: June 11, 2025

*Address correspondence to this author at the Chitkara University Institute of Engineering and Technology, Chitkara Rev1sed: July 09, 2025
University, Punjab, India; E-mail: ayush123456789@gmail.com Accepted: July 15, 2025

' , Nl Fay gmat. Published: November 11, 2025
Cite as: Goswami N, Dogra A, Bakshi S, Goyal B. Multimodal Medical Image Fusion: Techniques, Databases, Evaluation |@ @
Metrics, and Clinical Applications -A Comprehensive Review. Open Neuroimaging J, 2025; 18: €18744400417835.

http://dx.doi.org/10.2174/0118744400417835251022042920
Send Orders for Reprints to
reprints@benthamscience.net


https://openneuroimagingjournal.com/
https://creativecommons.org/licenses/by/4.0/legalcode
mailto:ayush123456789@gmail.com
http://dx.doi.org/10.2174/0118744400417835251022042920
http://crossmark.crossref.org/dialog/?doi=10.2174/0118744400417835251022042920&domain=pdf
https://creativecommons.org/licenses/by/4.0/
mailto:reprints@benthamscience.net
https://openneuroimagingjournal.com/

2 The Open Neuroimaging Journal, 2025, Vol. 18

1. INTRODUCTION

Medical imaging is an essential part of clinical
diagnostics because it allows physicians to visualize and
evaluate anatomical and physiological structures without
surgical intervention. Single imaging approaches are often
insufficient to capture all the necessary details, especially
when both anatomical and functional aspects need to be
evaluated. Magnetic Resonance Imaging (MRI) is known
for its high soft tissue resolution but lacks biochemical
data detection, whereas Positron Emission Tomography
(PET) provides functional metabolic information at the
expense of structural precision. Due to these constraints,
research has grown significantly in this field. MMIF is
defined as the combination of complementary information
from various imaging modalities for image enhancement,
accuracy, and interpretation. For quality assurance, the
fused image should not deviate from the essential
characteristic of the input modalities involved and should
not be distorted, occluded, or stained with artefacts [1].
For example, combining PET and MR data allows for a
detailed depiction of both the anatomy of soft tissues and
functional tumor metabolism, which is crucial for oncology
and neuroimaging. The use of CT and MRI fusion, as
shown in Fig. (1), allows clinicians to have a clear overall
overview of the bone structures and soft tissue during
treatment planning for radiotherapy and guidance for
complex surgical navigations.

The development in the field of medical technology,
along with the increasing diversity of medical conditions,
substantiates the crucial role of multimodal image fusion.
The rise in chronic illnesses makes multimodal imaging a
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treasured means of understanding the progression of the
disease. Despite its merits, there are many challenges for
MMIF. The fusion method must accurately preserve the
spatial, spectral, and contrast characteristics of the source
images. The choice of techniques for co-registration
should be proper because images from different
modalities, such as PET and MRI, must register precisely,
considering the size, resolution, and noise differences [2].

The fusion approaches are categorized into three
levels: pixel, feature, and decision, which aim to generate
a fused image that enhances visual perception. Traditional
medical image fusion techniques are categorized into
spatial, transform, and hybrid. The radical change in the
automation and performance of methods in MMIF has
been fueled by the use of convolutional neural networks,
autoencoders, and attention-based architectures [3]. Data-
driven learning enables these models to create mature
fusion strategies that are more adaptive and generalizable
than conventional rule-based models. The application of
transformer-based models and GANs has demonstrated
positive results for MMIF operations, particularly in PET-
MRI fusion and creation of high-resolution medical images
[4]. Applications for MMIF include the localization of brain
tumors, identifying breast cancer, as well as assessing
bone fractures and cardiovascular health. Fused images
are also helpful for Computer-Aided Diagnosis (CAD)
systems, which, after inputting multimodal data, can
generate models that, in turn, increase diagnostic
accuracy. Besides, MMIF allows enhanced presentation of
key structures and lesions, which are useful in pre-surgical
planning, radiotherapy, and interventional procedures [5].

Fig. (1). Medical image fusion [2].
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This review aims to provide comprehensive
information on the multimodal medical image fusion field,
encompassing traditional techniques, recent advances,
and future trends. The various sections of the review are
organized under the following headings.

1. A comparison of major medical imaging modalities.

2. An overview of publicly available multimodal
medical image databases, including TCIA, OASIS, ADNI,
MIDAS, and AANLIB.

3. MMIF steps: preprocessing, registration, fusion
strategy, and performance evaluation.

4. A taxonomy of fusion techniques.
5. Applications of Image Fusion in Clinical Medicine.

6. Image Quality Metrics in Medical Image Fusion.
7. Experimental Set Up and Discussion.

8. Challenges in MMIF deployment.

9. Emerging trends and future directions.

Through this review, we aim to lay a foundational
understanding that not only serves current practitioners but
also guides future research in designing clinically relevant
and scalable MMIF solutions. A comparative analysis of
recent review papers on MMIF, emphasizing key criteria
such as modality presentation, domain categorization,
database accessibility, quantitative evaluation, and clinical
applications, is done in Table 1. Fig. (2a) depicts the
growth in publications in this field, and Fig. (2b) shows the
process followed for literature review from 2014 to 2024.

Table 1. Comparative overview of recent review studies on multimodal image fusion.

Presentation of Presented Publicly Quantitative Key Challenges Clinical
Review (Year of Publication) | Modalities for Domains of Accessible Evaluation and Future Applications
Imaging MMIF Databases Results Directions e
Tirupal et al., 2021 [8] Yes Yes No Yes Yes No
Hermessi et al., 2021 [60] Yes Yes No Yes Yes No
Haribabu et al. 2022 [5] Yes Yes No Yes No No
Saleh et al. 2023 [6] Yes Yes No Yes No No
Diwakar et al. 2023 [53] Yes Yes No Yes Yes No
Kalamkar and Mary 2023 [2] Yes Yes No No Yes No
Khan et al.,2023 [19] Yes Yes Yes Yes Yes No
Our Work Yes Yes Yes Yes Yes Yes
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Fig. (2a). Growth in MMIF publication trend chart (WOS).
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Fig. (2b). Flowchart illustrating the article selection process for
a literature review on pixel-based image fusion in medical
imaging, covering publications from 2014 to 2024.

The methodology adopted for this study involved a
structured literature search and screening process from
2014-2024. Google Scholar was selected as the principal
database due to its comprehensive indexing of scholarly
articles across several disciplines, ensuring the inclusion
of the most relevant and recent advancements in the field.
Specific keywords such as “Pixel-based image fusion,”
“medical image fusion,” and “multi-modality” were used.
This initial search yielded a total of 170 articles. These
were then categorized into review articles (10) and
research articles (160) based on their scope and content.
The selection process emphasized relevance to the
research objectives, specifically focusing on pixel-level
fusion methods and their applications in medical imaging.
Articles not related to the scope, duplicates, or those with
insufficient methodological details were excluded. After

Goswami et al.

this screening, 80 articles were finalized and critically
analyzed for the literature review under five different
domains, i.e., spatial, transform, deep learning, sparse,
and hybrid.

1.1. Imaging Modalities in Medical Image Fusion

Through the fusion of several medical imaging
techniques, MMIF manages to gather a variety of
information concerning structural and functional features
of human bodies. An overview of structural, functional,
and multimodal imaging modalities is given in Fig. (3).

X-rays are a fundamental imaging modality and are
still highly used for imaging bones, for identifying
fractures, infections, tumors, etc., in a two-dimensional
image. Computed Tomography (CT) is a method that
utilizes ionizing radiation in the form of X-rays for
producing cross-sectional three-dimensional images of the
body in great detail. It is superior in visualizing bones,
revealing internal bleeding, and detecting tumors. CT
scans offer rapid and cost-effective imaging, making them
a routine choice in trauma evaluations; however, they
involve exposure to ionizing radiation [6]. While CT excels
in imaging bones compared to MR, it cannot differentiate
soft tissues as effectively.

Magnetic Resonance Imaging (MRI) is a non-invasive
technology that uses magnetic fields and radio waves to
create high-quality images of soft tissues in the brain,
muscles, and other internal organs without the use of
ionizing radiation. Owing to its superior image quality and
the absence of radiation exposure, MRI is the modality of
choice for evaluating brain tumors, spinal cord
abnormalities, and ligament injuries [7].

Positron Emission Tomography (PET) is an invasive
imaging modality utilizing ionizing radiation to assess
metabolic and functional processes within the body. The
technique involves administering a radiotracer that emits
positrons during radioactive decay. PET is beneficial for
oncology, neurology, and cardiology because it detects
biochemical changes before anatomical changes are
observable. The PET’s weak spatial resolution is
complemented by its combination with MRI or CT
techniques to enhance anatomical mapping. SPECT and
PET use radioactive tracers to measure blood flow and
metabolic processes. However, SPECT has less sensitivity
and poorer imaging resolution than PET. Despite its
limitations, SPECT offers important data for diagnosing
cardiac perfusion problems, epilepsy, and bone disorders.
When SPECT is combined with CT or MR, its diagnostic
reliability increases significantly, minimizing the effect of
its poorer spatial resolution. fMRI uses the measurement of
changes in blood oxygenation and flow that correspond to
neural activity as an extension of a standard MRI. It is
especially evident in brain mapping applications in
neuroscience research and surgery planning. Researchers
at MMIF often combine fMRI with structural MRI to impart
brain function to particular anatomical structures [8]. Table
2 presents the categorization of imaging modalities, such as
ultrasound and endoscopy, according to their degree of
invasiveness and the extent of patient exposure to ionizing
radiation.
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Fig. (3). Overview of structural, functional, and multimodal medical imaging modalities.
Table 2. Comparative analysis of medical imaging modalities.
. ) . Ionizing . .
Modality | Type of Information Invasiveness Radiation Resolution Typical Use Cases
MRI Anatomical (soft tissue) Non-invasive No High spatial Brain, spinal cord, joints
CT Anatomical (bone/soft tissue) Non-invasive Yes High spatial Trauma, tumors, lungs
PET Functional (metabolic) Slightly Invasive (radiotracer) |Yes Low spatial Cancer staging, brain disorders
SPECT Functional (blood flow) Slightly Invasive (radiotracer) |Yes Low spatial Cardiology, brain perfusion
Ultrasound|Anatomical (real-time soft tissue)|Non-invasive No Moderate spatial |Pregnancy, abdomen, heart valves
X-ray Anatomical (bone, dense tissue) |[Non-invasive Yes Moderate spatial |Fractures, chest infections
fMRI Functional (neural activity) Non-invasive No Moderate spatial |Brain mapping
Endoscopy | Visual (surface/internal tissues) |Invasive No Very high visual |GI tract visualization, surgical guidance




6 The Open Neuroimaging Journal, 2025, Vol. 18

2. MULTIMODAL MEDICAL IMAGE DATABASES

The development and validation of Multimodal Medical
Image Fusion (MMIF) algorithms require robust, diverse,
and accessible imaging datasets. Publicly available
datasets offer researchers an opportunity to test their
fusion methods across multiple imaging modalities and
pathological conditions in a reproducible manner. A
variety of high-quality databases have emerged in recent
years, as shown in Fig. (4), supporting fusion research
across neuroimaging, oncology, cardiology, and more. This
section highlights some of the most widely used datasets,
TCIA, OASIS, ADNI, MIDAS, AANLIB, and DDSM, and
outlines their characteristics, disease focus, modality
support, and accessibility.

‘. OASIS ‘

ADNI TCIA

-~

Whole Brain Atlas
(AANLIB)

' MIDAS ‘

DDSM

Fig. (4). Major publicly available multimodal medical image
databases.

2.1. The Cancer Imaging Archive (TCIA)

TCIA appears to be one of the top sources of
comprehensive and exhaustively curated cancer imaging
data repositories. Under the direction of the National
Cancer Institute (NCI), the collection encompasses more
than 50,000 richly varied imaging cases CT, MRI, PET,
and histopathology. TCIA is a benchmark for assessing
fusion algorithms because of its ability to support
multimodal imaging research. For example, the Lung-PET-
CT-Dx dataset contains synchronized PET and CT scans for
the diagnosis of lung cancer, and BraTS contains
multimodal MRI (T1, T1-Gd, T2, FLAIR) images annotated
for brain tumor research. The platform allows for direct
visualization and annotation support through integration
with 3D Slicer, ITK-SNAP [9].
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2.2. Open Access Series of Imaging Studies (OASIS)

OASIS provides an extensive collection of
neuroimaging data, specifically, destined for studies in
aging, Alzheimer’s disease, and cognitive deficits. OASIS
consists of cross-sectional MRI and PET imaging datasets.
OASIS-3, the latest version, contains over 2,000 subjects
that had a series of imaging sessions, genetic testing, and
clinical testing [10]. The variety of modalities within
OASIS datasets makes them ideal for fusion studies. One
example is the accuracy of diagnosis of Alzheimer's
disease at its earliest stages by using the amyloid PET
along with the T1-weighted MRI. Each dataset is
represented in the NIfTI format, a reputable neuroimaging
standard, and is accompanied by metadata that includes
the results of cognitive evaluations.

2.3. Alzheimer’s Disease Neuroimaging Initiative
(ADNI)

ADNI is a collaborative investigation for the study of
the progress of Alzheimer’s disease through imaging and
clinical data. It provides rich longitudinal data drawn from
several imaging and biomarker modalities such as MRI,
FDG-PET, amyloid PET, and CSF biomarkers. The
initiative tracks more than 1,700 participants through
various stages of cognitive decline. ADNI research
subjects are characterized at three cognitive levels such as
cognitively normal, MCI, and Alzheimer’s disease. The
large temporal resolution of ADNI allows the study of
temporal dynamics of brain change represented by other
imaging technologies. In many ADNI data-based
investigations, researchers use fusion methods to predict
progression from MCI to Alzheimer’s by combining
structural MRI with metabolic PET information [11].
Researchers can obtain data from the ADNI through an
application process, in the form of DICOM and NIfTI, via
the Laboratory of Neuro Imaging (LONI) platform.

2.4. Medical Image Data Archive System (MIDAS)

MIDAS, an adaptable data management system, was
developed by Kitware, which serves the area of imaging
datasets, including the realms of radiology, pathology, and
ultrasound. The system’s flexible architecture enables the
integration and storage of 2D and 3D imaging data
together with corresponding clinical and demographic
records. The uniqueness of MIDAS is its capability to
integrate custom plugins and tools, which is useful for
researchers who work with end-to-end pipelines for image
fusion and segmentation. Some of the commonly used
datasets in MMIF research include Head-Neck Cancer CT-
MRI and Cardiac MR + Ultrasound [12]. MIDAS can
handle DICOM, RAW, and Metalmage (.mha).

2.5. Digital Database for Screening Mammography
(DDSM)

The DDSM repository exists with the objective of large-
scale breast detection, predominantly facilitated by X-ray
mammograms. Although the repository originally
concentrated on one modality, the recent additions, such as
INbreast and CBIS-DDSM, have included histopathology
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and ultrasound data for supporting multimodal analysis.
The DDSM collection contains more than 2,500 studies,
several of which are annotated with information about mass
boundaries. The DDSM’s usefulness for MMIF lies in its
synthesis of mammographic features with pathological
confirmation, supporting the integration of image and
diagnostic data [13].

2.6. Annotated Alzheimer Neuroimaging Library
(AANLIB)

AANLIB was created as a dataset specific to assisting
multimodal fusion and classification research for
Alzheimer’s disease. It includes thousands of cases with T1-
MRI, FLAIR, PET, and neurocognitive records. Unlike large
datasets such as OASIS or ADNI, AANLIB provides images
that are prepared for fusion (preprocessing corrects for
skull stripping and registration). These standardized images
significantly streamline the work in the MMIF workflows.
The AANLIB’s corresponding images are archived in NIfTI
format, and its accompanying ground truth labels are
provided for employing it in supervised learning
procedures. The open access for academic users makes it
suitable for evaluating deep learning fusion algorithms [14].
The source images of the brain from AANLIB in axial,
sagittal, and coronal sections are presented in Fig. (5).

2.7. Dataset Summary and Usage Patterns

The most widely used fusion modalities across these
datasets include MRI4+PET, MRI+CT, and PET+CT,

reflecting the clinical demand for combining anatomical and
functional insights. For example, ADNI and OASIS
predominantly use MRI+PET, while TCIA and MIDAS offer
CT+PET or MRI+CT combinations. Table 3 provides an
overview of the available databases with respect to imaging
modalities, anatomical regions, and file formats. Regarding
disease focus, the datasets are primarily oriented toward
the following pathological conditions:

Neurodegenerative diseases: OASIS, ADNI, AANLIB
Cancer imaging: TCIA, DDSM, MIDAS

Cardiac and head-neck imaging: MIDAS
Neurofunctional tasks: AANLIB, OASIS

3. MMIF PROCESS FLOW AND FUSION LEVELS

Multimodal Medical Image Fusion (MMIF) is a complex,
multistage process designed to integrate complementary
information from multiple imaging modalities into a single,
more informative representation. This process is typically
divided into four primary stages such as preprocessing,
registration, fusion, and validation. Each stage involves
distinct technical considerations and affects the overall
quality and clinical reliability of the fused output.
Furthermore, fusion can be performed at different

abstraction levels, pixel, feature, and decision, each offering
specific benefits and trade-offs. Understanding this full
workflow is critical for designing and evaluating robust
MMIF systems.

Fig. (5). AANLIB Source images of the brain in axial (a) and (b), sagittal (c), and coronal sections (d) [14].

Table 3. Database summary of modalities, organs, format, and types of access.

Database | Modalities Target Organs / Systems File Formats Access Type

TCIA CT, MR, PET, Histopathology |Brain, Lung, Breast, Prostate |DICOM, NIfTI Open (via API & GUI)

ADNI MRI, PET, CSF Brain (Neurodegeneration) DICOM, NIfTI Request-based (LONI access)

OASIS MRI, PET Brain (Aging, Dementia) NIfTI Open (with Data Use Agreement)
AANLIB MRI, PET, FLAIR Brain (Alzheimer’s) NIfTI Open (Academic Use)

MIDAS CT, MRI, Ultrasound Head & Neck, Heart, Abdomen|DICOM, MHA, RAW|Open (Kitware tools)

DDSM Mammography, Histopathology|Breast LJPEG, DICOM Open (Preprocessing scripts available)
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Image A |

Image

Registration
=

Image B

Fig. (6). Steps in the process of image fusion [15].

3.1. Preprocessing

Preprocessing serves as the foundation of MMIF and
involves preparing images for further stages by enhancing
quality and ensuring uniformity across modalities. This
stage includes noise reduction, intensity normalization,
contrast enhancement, resolution adjustment, and format
conversion. Since different imaging modalities have
different spatial resolutions, acquisition angles, and noise
characteristics, preprocessing plays a vital role in aligning
these disparities. For instance, Magnetic Resonance
Imaging (MRI) often exhibits inhomogeneous intensity,
while Computed Tomography (CT) is prone to beam-
hardening artifacts. Normalizing these differences using
histogram equalization or z-score normalization improves
the effectiveness of subsequent fusion steps. Additionally,
many public datasets like AANLIB provide preprocessed
images, including skull stripping and spatial
standardization, reducing the preprocessing burden on
researchers [15]. Advanced preprocessing techniques such
as total variation filtering, anisotropic diffusion, and
rolling guidance filters have been adopted in recent MMIF
research to preserve structural details while eliminating
noise. These techniques are especially beneficial in fusion
scenarios involving low-quality or low-contrast images.
The process of image fusion is shown in Fig. (6).

3.2. Image Registration

Registration is the process of spatially aligning two or
more images of the same anatomical region, but from
different modalities. It compensates for differences in
image scale, orientation, and position, ensuring that
corresponding anatomical structures overlap accurately.
The accuracy of registration directly affects the fidelity of
the final fused image, especially in pixel- and feature-level
fusion.

Image registration methods are typically categorized
into rigid, affine, and non-rigid (deformable) techniques.
Rigid registration handles only translation and rotation,
while affine registration includes scaling and shearing.
Non-rigid registration addresses complex deformations
and is often necessary when fusing modalities like PET

A
.~ Feature .
[ ; ;
~ Extraction -

Goswami et al.

. Final Fused }
Fusion
Image

Fusion Rule

and MRI due to organ motion or different acquisition
geometries. Techniques such as mutual information
maximization, normalized cross-correlation, and landmark-
based mapping are commonly employed. Deep learning-
based registration models, especially U-Net architectures
trained on spatial transformer networks, are gaining
popularity due to their speed and robustness. These
methods can perform unsupervised, real-time registration
even in challenging clinical settings.

3.3. Image Fusion Techniques

The core of MMIF is the fusion process itself, which
combines information from registered images into a single
image. Fusion techniques are classified based on the level
at which integration occurs, as described in Fig. (7).

3.3.1. Pixel-level Fusion

Pixel-level fusion is the most straightforward approach,
where corresponding pixels from the source images are
directly combined using arithmetic or logical operations.
Common methods include weighted averaging, maximum
selection, and wavelet-based combination. These methods
are computationally efficient but highly sensitive to
registration errors and noise. Recent enhancements at this
level involve multiscale transforms such as NSCT (Non-
subsampled Contourlet Transform), DWT, and shearlet
transforms, which improve spatial-frequency localization
and reduce artifacts [16]

3.3.2. Feature-level Fusion

Feature-level fusion focuses on processing and
integrating visual features that are more relevant than
individual pixels. This strategy involves independently
extracting high-level characteristics such as edges,
textures, and shapes from the source images and then
using a fusion method on them. This level offers better
robustness against misregistration and provides more
semantically meaningful outputs, leading to enhanced
visual perception, decision-making precision. Techniques
like SIFT (Scale-Invariant Feature Transform), Gabor
filters, and gradient domain methods are widely used for
this purpose.
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Fig. (7). Levels of multimodal medical image fusion.

Table 4. Fusion level vs. application scope.

Fusion Level | Description Techniques

Advantages

Limitations Typical Applications

Combines corresponding pixels
from source images using
arithmetic or transform-based
methods

Averaging, Maximum
Selection, DWT, NSCT,
Shearlet

Pixel-Level

Preserves fine structural
details; computationally
simple

MRI-CT fusion in brain
imaging; PET-CT for tumor
mapping

Highly sensitive to noise
and registration errors

Extracts and fuses intermediate
features such as edges, texture,
and gradients before
reconstruction

SIFT, CNN features,
sparse representation,
PCA

Feature-Level

Robust to alignment errors;|complexity; depends on
preserves semantic content |effective feature

Alzheimer’s analysis using
MRI-PET; tumor
segmentation from hybrid
extraction MRI

High computational

Fusion occurs after independent
modality analysis at the
classification or prediction
stage.

Majority voting,
Bayesian inference,
ensemble fusion

Decision-Level

Allows modality-specific
models; lower dependence
on pixel accuracy

Does not generate a
fused image;
interpretability is
reduced

CAD systems for tumor
detection, Al-based
diagnosis integration

Feature-level fusion can be categorized according to
the nature of the methodologies used and the combined
features. These techniques can be broadly categorized into
sparse representation methods and clustering-based
methods. Sparse techniques express images as sparse
vectors in a dictionary. These methods typically divide
source images into patches, organize them into vectors,
and then perform the fusion process. Clustering
algorithms, including Quantum Particle Swarm Optimi-
zation and Fuzzy C-means, can split feature spaces and
provide weighting factors for fusion.

3.3.3. Decision-level Fusion

At the decision level, fusion occurs after separate
processing and classification of input images. This is

commonly used in Computer-Aided Diagnosis (CAD)
systems and is especially relevant in Al-based clinical
workflows. Methods for decision-level fusion include
majority voting, Bayesian inference, Dempster-Shafer
theory, and ensemble learning techniques, which weigh
individual decisions to derive a robust outcome. While
decision-level fusion is less sensitive to registration errors
and allows for modality-specific preprocessing and
modeling, it lacks spatial resolution in the final output. It
is generally unsuitable when a fused image is required for
direct interpretation [17]. A brief comparison of these
three, along with the scope of application, is summarized
in Table 4.
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3.4. Validation and Evaluation

Validation assesses the quality and clinical utility of
the fused image using objective metrics and, where
possible, expert evaluation. The most commonly used
metrics include:

e Structural Similarity Index (SSIM): Measures perceived
image quality and structural preservation.

e Peak Signal-to-Noise Ratio (PSNR): Evaluates image
fidelity based on pixel intensity.

e Mutual Information (MI): Quantifies the amount of shared
information between fused and source images.

e Entropy (EN): Reflects information richness in the fused
image.

e Edge Preservation Index (EPI) and Spatial Frequency
(SF): Measure edge clarity and texture detail [18].

Visual comparison remains essential in clinical
validation. Radiologists or clinical experts often review
Fusion outputs to assess diagnostic relevance and inter-
pretability. Increasingly, evaluation also includes testing
downstream tasks such as segmentation, classification, and
localization to assess the practical benefits of fusion. MMIF
is a multi-stage process where each phase requires tailored
algorithms and quality checks to ensure robust
performance, from preprocessing to validation. Fusion can
be applied at different levels depending on the application,
with each level offering unique advantages. Recent
advances, especially in deep learning and transformer
models, have improved registration accuracy and fusion
robustness, allowing real-time, scalable implementations in
clinical environments. The modular nature of the MMIF
makes it adaptable, allowing hybrid strategies that combine
pixel, feature, and decision-level fusion to maximize clinical
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efficacy [19]. The various steps in the entire workflow are
depicted in Fig. (8).

I —

/I;put Images (MRI,CT,PET etc)
| Per processing |
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: Fusion “

- (Pixel,Feature, Decision)

Fused Image

—

Fig. (8). MMIF workflow [19].

4. FUSION DOMAINS AND TECHNIQUES

These MMIF methods are wused in diverse
computational realms, which impart unique advantages.
The choice of domain affects the efficiency, quality, and
real-world applicability of fusion results. The prominent
domains and their respective techniques are described in
Fig. (9).
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Fig. (9). Various domains of multimodal medical image fusion along with techniques.
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This section presents a structured review of the
dominant fusion domains under five headings:

Spatial Domain

Frequency /Transform Domain
Sparse representation

Deep learning, and

Hybrid Domain.

4.1. Spatial Domain

Image fusion in the spatial domain is distinguished by
simple computation and sound handling, which can be
easily used and processed. In this process, image fusion is
performed using methods that manipulate pixel values
without first transforming them into frequency domain
formats. Conventional spatial fusion methods include
Principal Component Analysis (PCA), Intensity-Hue-
Saturation (IHS) mapping, Brovey transformation, and
high-pass filtering. Such methods have the advantage of
simplicity, faster execution times, and more vivid color
expression, making them suitable for real-time cases and
applications where computational power is limited. For
instance, SPECT-MRI fusion has opportune over the THS-
based methods, which enhance the blending of anatomical
and functional views without involving complex
computational routines, as shown in Fig. (10).

Spatial domain methods tend to cause edge softening,
spectral distortion, and weak noise tolerance. Since these
techniques lack frequency composition, they cannot capture
subtle textural and high-frequency details, and thus their
role in complex applications such as brain tumor
localization or microvascular imaging cannot be fully
realized. Initial Studies by Baraiya and Gagnani [20] and
Parekh et al. [21] highlighted traditional techniques like
Principal Component Analysis (PCA) and Brovey Transform,
which are utilized in fields such as remote sensing and
preliminary diagnostic systems. These methods highlighted
fundamental spatial integration while exposing significant

problems, including spatial distortions and inadequate
spectral preservation. Morris and Rajesh [22] recognized
the constraints of static fusion rules, advocating for image-
adaptive approaches. Bhuvaneswari and Dhanasekaran [23]
identified that conventional spatial domain techniques
diminish image contrast, prompting the advancement of
transform-domain solutions.

Li et al. [24] and Du et al. [25] made significant
advancements by incorporating multi-scale transforms and
edge-preserving filtering, thereby enhancing both
structural integrity and contrast preservation. Their efforts
established the foundation for hybrid spatial-transform
techniques. Zhan et al. [26] tackled brain image fusion by
implementing guided filtering and spatial gradient-based
enhancements, which demonstrated enhanced performance
in high-detail areas like cerebral tissue and lesions. Kotian
et al. [27] conducted a comparative analysis, suggesting
that a spatial/wavelet hybrid approach, which combined
both spatial and spectral attributes, is a recommended
method for general Multi-Image (MI) fusion. From
2018-2023, the field underwent substantial maturation
when researchers such as Liu [28], Na [29], Saboori [30],
and Pei [31] employed wavelet transforms, multi-resolution
decomposition, and guided filtering to preserve feature
layers and minimize distortion. They attained significant
success in applications including PET-MRI, CT-MRI fusion,
and brain pathology analysis. Tan [32], Chen [33], and
Deepali [34] focused on enhancing low-complexity
algorithms for rapid implementation in real-time systems,
whereas Kong [35], Li [36], Feng [37], and Zhang [38]
introduced sophisticated spatial techniques such as
Framelet Transform, quasi-bilateral filtering, and structural
dissimilarity metrics. These recent methodologies show
enhanced performance in terms of structural retention,
contrast preservation, and computational efficiency relative
to State-of-the-Art (SOTA) fusion techniques. The
progression of spatial domain techniques indicated a trend
towards hybridization, multi-scale modeling, and adaptive
spatial decision-making, thereby enhancing robustness in
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clinical applications such as lesion localization, radio-
therapy planning, and neuroimaging diagnostics. Table 5
depicts the fusion strategy and area of application in the

spatial domain.

4.2. Transform Domain

The transform or frequency domain has emerged as a

powerful

approach

to mitigate

several

challenges

associated with secure image fusion. Leading up to these

transformations

is the conversion of

images using

conversion algorithms such as the Fourier Transform,

Discrete Wavelet

Transform (DWT),

Non-Subsampled

Goswami et al.

Contourlet Transform (NSCT), or Laplacian Pyramid
method. These changes separate images into separate
spatial-frequency components, thus allowing for a more
accurate separation of structural vs. textural aspects.
Thereafter, when fusion is carried out in the transform
domain, the reconstructed final image features an inverse
transformation. Since frequency-based approaches excel at
maintaining edge sharpness and texture information, they
are suitable for clinical endeavors involving precise
structure separation, such as identifying tumor edges. The
basic process of decomposition and application of the
inverse transform is shown in Fig. (11).

Table 5. Summary of spatial domain methods in medical image fusion.

Author (Year)

Technique

Method

Fusion Strategy Area of Application

Baraiya & Gagnani
(2014) [20]

PCA, direct pixel integration

Classical Spatial

Basic fusion using PCA for improved
interpretability

Computer vision, medical
imaging

Parekh et al. (2014) [21]

Brovey Transform, Color
Model

Spatial

Color normalization and red channel

s . Remote sensing, radiolo
enhancement; prone to spatial distortion g 9y

Morris & Rajesh (2015)
[22]

Pixel arithmetic (avg, add,
subtract)

Spatial

Emphasized input-based method selection;

. L . Diagnostic imagin
basic fusion is not always optimal g ging

Bhuvaneswari &
Dhanasekaran (2016)
[23]

Spatial vs. Transform

Comparative Study

Highlighted contrast loss in spatial fusion;

MRI-CT, PET fusi
promoted hybrid alternatives CT. usion

Liet al. (2017) [24]

Multi-scale + edge
preserving filter

Spatial-Transform
Hybrid

Proposed framework to preserve detail in

Clinical di ti
structural fusion Inical dlagnostics

Du et al. (2017) [25]

Local Laplacian filtering +
multi-scale framework

Spatial

Used predefined features for distortion-free

PET-SPECT fusion Brain imaging

Zhan et al. (2017) [26]

Fast gradient filtering +
morphological closure

Gradient-Based Spatial

Introduced fast structure-preserving filters;

. . Multi-organ fusion
reduced execution time g

Kotian et al. (2017) [27]

Comparative analysis

Spatial / Wavelet Hybrid

Recommended combination of spatial and

. G 1 MI fusi
spectral attributes enera usion

Multi-scale joint

Directional coefficients for high-detail

[30]

spatial optimization

Liu X et al. (2018) [28] |decomposition + shearing |Transform Hybrid . Brain functional imaging
. retention
filters
NaY etal. (2018) [29] |Filter-guided wavelet fusion |Wavelet/Spatial Accurate localization of anatomical targets CT-MRI fusion
Saboori et al. (2019) Adaptive filtering + spectral- Spatial Structural and spectral enhancement through Biomedical instrumentation

filter parameter tuning

Pei C et al. (2020) [31]

Guided filtering + multiscale
layers

Spatial + Texture
Layering

Preserved structural layers and enhanced

Multi-organ medical imagin
image contrast g gng

Tan W et al. (2021) [32]

Three-layer image fusion

Spatial Layering

Validated on >100 image pairs from multiple

pathologies Collaborative diagnosis

Chen et al. (2021) [33]

Rolling Guidance Filtering

Spatial

Separated and fused structural-detail layers;

Head in i i
maintained anatomical clarity ead and brain imaging

Deepali (2022) [34]

PCA, ICA, Averaging

Classical Spatial

Low-resource medical
devices

Advocated low-complexity spatial fusion for
fast implementation

Kong W et al. (2022)
[35]

Framelet Transform +
Subband fusion

Framelet / Spatial

Improved structure clarity vie GDGFRW and

SWEF modules Radiology, Lesion detection

LiJ et al. (2023) [36]

Modified Laplacian + Local
Energy

Spatial Energy-based

Enhanced feature energy preservation;

outperformed 9 SOTA methods Harvard dataset

Feng et al. (2023) [37]

SSD for detail and texture
retention

Structural Similarity

Solved low contrast and pseudo-edges using
structure-preserving fusion

Clinical diagnosis (multi-
pathologies)

Zhang et al. (2023) [38]

Quasi-cross bilateral filtering
(QBF)

Spatial Filtering

Focused on edge contour, lesion detail, and

contrast; high benchmark performance. PET/MRI fusion, Neurology
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Fig. (11). Basic methodology of CT and MRI fusion in the transform domain described along with CT and MRI images from AANLIB [19].

Preliminary research, including that of Singh et al. [39],
tackled the shortcomings of real-valued wavelet transforms,
specifically shift sensitivity and inadequate directionality by
utilizing the Dual-Tree Complex Wavelet Transform
(DCxWT). This method markedly enhanced fusion results by
maintaining phase and directional specifics. In the same
year, Ganasala et al. [40] introduced an image fusion
technique for CT and MR images with the Nonsubsampled
Contourlet Transform (NSCT), resulting in improved
visualization of soft tissue and osseous structures. Bhateja
et al. [41] advanced this research by developing a two-stage
architecture that included Stationary Wavelet Transform
(SWT) and NSCT, utilizing PCA for redundancy mini-
mization and contrast enhancement.

To more effectively capture edge information,
Srivastava et al. [42] utilized the Curvelet Transform, which
showed enhanced efficacy in maintaining anisotropic
features and improving visual perception via a local energy-
based fusion rule. Xu et al. [43] presented the Discrete
Fractional Wavelet Transform (DFRWT), which, due to its
fractional order parameters, facilitated adaptive
decomposition and enhanced multimodal image fusion
efficacy. Gomathi et al. [44] demonstrated that the NSCT
method provides improved frequency decomposition while
efficiently preserving high-frequency image components. In
contrast, Liu et al. [45] showed that the NSST is highly
effective in maintaining texture and detail. Numerous
scholars investigated shearlet-based and nonsubsampled
techniques for improved frequency decomposition. Gambhir
et al. [46] also demonstrated that the fused images obtained
from the proposed method offer better clarity and enhanced
information, making them more useful for quick diagnosis
and improved treatment of diseases.

Li et al. [47] improved fusion efficacy by utilizing NSST
with a novel fusion rule that reduced blocking and blurring
artifacts through local coefficient energy and mean-based
methodologies, while Ganasala and Prasad [48]
implemented SWT with Transformation Error Minimization
(TEM) to improve image fusion quality while decreasing
computational load. Goyal et al. [49], Khare et al. [50], and
Kong et al. [51] enhanced image fusion by preservation of
edges, textures, and structural boundaries, minimizing
artifacts with RGF/DTF, median-based NSST, and Framelet
Transform, respectively. The results of the work by Diwakar
et al. [52] demonstrated that non-conventional transform
domains yield improved outcomes when integrated with
various spatial domain architectures. An overview of
various transform techniques is presented in Fig. (12).
Although distinguished by their quality enhancements,
frequency domain approaches are accompanied by
increased computational costs and high requirements for
exact image registration, which may be quite challenging to
implement in practice. The key contributions are presented
in Table 6.

4.3. Sparse Representation

The sparse representation-based fusion method
provides a more compacted, higher information-to-data
ratio. Sparse methods examine images by projecting them
onto a dictionary of basis functions, which can be trained or
predetermined. The focus is on a small set of coefficients
that correspond to significant aspects of the image. By
combining coefficients from different modalities, as shown
in Fig. (13), the method constructs a fused image with
enhanced predominant structure and contrast.
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Table 6. Key contributions from the transform domain.

Study

Methodology

Key Contributions

Singh et al. [39]

Dual-Tree Complex Wavelet Transform
(DCXWT)

Addressed the constraints of wavelet transforms, such as shift sensitivity, poor
directionality, for better fusion.

Ganasala et al. [40]

Nonsubsampled Contourlet Transform
(NSCT)

Improved visualization of soft tissue and bone structure, enhancing the quality of
image fusion.

Bhateja et al. [41]

SWT + NSCT with PCA

Developed a dual-stage architecture for contrast enhancement and redundancy
minimization.

Srivastava et al. [42]

Curvelet Transform

Effectively captured anisotropic features and improved visual perception with a local
energy-based fusion rule.

Xu et al. [43]

Discrete Fractional Wavelet Transform
(DFRWT)

Delivered adaptive decomposition for enhancing fusion performance across
modalities.

Gomathi et al. [44]

NSCT

Improved frequency decomposition efficiently maintains high-frequency image
components.

Liu et al. [45]

Nonsubsampled Shearlet Transform (NSST)

Successfully maintain texture and detail effectively.

LiLetal. [47]

NSST with novel fusion rule

Addressed blocking and blurring artifacts using local coefficient energy and a mean-
based fusion technique.

Ganasala & Prasad [48]

SWT with Transformation Error Minimization
(TEM)

Optimized performance with less computational load and improved image fusion
quality.

Goyal et al. [49]

Rolling Guidance Filtering (RGF) and Domain
Transfer Filtering (DTF)

Maintained edge and texture details while fusing low-resolution images.

Khare et al. [50]

Median-based fusion rule within NSST

Preserved structural boundaries through median-based fusion.

Kong et al. [51]

Framelet Transform (FT)

Resolved fusion artifacts and texture degradation by decomposing images into
structured layers.

Transform Domain

Techniques

Wavelet Based
Transform

Multiscale Geometric
Analysis Transforms

Frequency Based
Transforms

Discrete Wavelet
Transform
DWT

Directional

Multi Resolution

Fourier
Transform
FT

Multi Scale

Analysis Analysis

Fast Fourier

Stationary Wavelet
Transform
SWT

Dual Tree Comlpex

Wavelet Transform
DTCWT

Shearlet
Transform

Ripplet
Transform

Laplacian
Pyramid (LP)

L Contourlet
Transform (CT)

Transform
FFT

hort-Time Fourie
Transform
STFT

Nonsubsampled

Contourlet Sl

Pyramid

Curvelet
Transform

Fig. (12). Overview of different techniques of the transform domain.
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It has gained significant interest because of its ability
to maintain prominent image elements such as edges and
textures while minimizing redundancy. A typical SR-based
image fusion process comprises the following steps:

1. Extraction of patches from source images (such as
CT and MRI).

2. Encoding of each patch with a trained dictionary.

3. Integration of sparse coefficients by a criterion (e.g.,
max-selection or averaging).

4. Reconstruction of amalgamated patches to achieve
the final image [53].

Zhang et al. [54] described how the SR model forms a
dictionary through a sparse linear combination of
prototype signal models. According to Joint Sparse
Representation (JSR), several signals from several sensors
of the same scene constitute an ensemble. While each
signal possesses an innovative sparse component, they all
share a common sparse component. As compared to SR,
the JSR presents reduced complexity. Zong et al. [55]
proposed a sparse method using categorized image
patches based on their geometric orientation. Liu et al.
[56] made a significant early contribution by introducing

Table 7. Categories of sparse representation methods.

Convolutional Sparse Representation (CSR), an alternate
representation of SR using the convolutional form, aiming
to achieve SR of a complete image rather than a localized
image patch.

Liu et al. [57] presented Convolutional Sparsity-based
Morphological Component Analysis (CS-MCA). In contrast
to the conventional SR model, which relies on a single
image component and overlapping patches, the CS-MCA
model can concurrently accomplish multicomponent and
SRs of the source images by amalgamating MCA and CSR
within a cohesive optimization framework. Shabanzade
and Ghassemian [58] employed sparse representation in
the NSCT (Nonsubsampled Contourlet Transform) domain
in a hybrid context. Their approach integrated low-
frequency coefficients through sparse coding and high-
frequency components using max-selection, resulting in
both multiscale decomposition and sparse adaptability.
Alternative hybrid methodologies have integrated SR with
PCNN (Pulse Coupled Neural Networks), and clustering-
based multi-dictionary learning, which allocates region-
specific dictionaries (e.g., for edges versus smooth
regions) to enhance localization and context-aware fusion.
The various categories of sparse methods are also
described in Table 7.

Category Model

Local and single-component SR-based

Orthogonal Matching Pursuit (OMP),

Simultaneous OMP (SOMP),

Group Sparse Representation (GSR),

Sub-dictionary-based adaptive SR combined with other transforms

Multi-component SR-based

Joint Sparse Representation (JSR),
Morphological Component Analysis (MCA)

Global SR-based

Convolutional Sparse Representation (CSR)

Simultaneous multi-component and Global SR-based

MCA-extended version of CSR
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Table 8. Challenges of sparse representation methods in image fusion.

Aspect Challenges

Feature Preservation [53]

Poor dictionary training can result in suboptimal fusion outcomes.

Adaptability [53] in resource-constrained environments.

The process of dictionary learning is computationally intensive and requires substantial training data, posing challenges

Robustness to Misregistration [60]|Significant misregistration can still degrade fusion performance, necessitating precise alignment in practice.

Computational Complexity [61]

SR methods are computationally demanding, which limits their applicability in scenarios requiring rapid processing.

Noise Sensitivity [62]

understood.

SR methods may inadvertently amplify noise, compromising image quality if the noise characteristics are not well

SR continues to serve as a robust intermediary
solution between conventional and deep learning-based
fusion approaches. Its unsupervised characteristics and
adaptability render it especially advantageous in contexts
with limited labeled data. As highlighted in the paper by
Hermessi et al. [59], SR remains fundamental to numerous
advanced approaches, particularly in hybrid fusion
architectures where it enhances contrast, clarity, and
feature retention [60]. When sparse representation is
utilized alongside multi-scale techniques, such as NSCT,
Laplacian Pyramid, Dual Tree Complex Wavelet, or
Curvelet, it effectively improves fine details, boosts
contrast, and minimizes noise. According to a review by
Zhang et al. [61], sparse representation proved superior to
traditional multi-scale approaches in terms of retaining
image structures and defining edges. It learns an
overcomplete dictionary from a set of training images,
resulting in more stable and significant results. A smart
blending approach that combines SR with SCNN to
overcome flaws such as edge blurriness, diminished
visibility, and blocking artifacts was proposed by Yousif et
al. [62]. The results have demonstrated that the proposed
method is superior to previous techniques, particularly in
suppressing the artifacts produced by traditional SR and
SCNN methods. Table 8 summaries the advantages and
challenges of this domain. SR-based approaches encounter
constraints, including:

e The high computational cost results from sparse
optimization procedures.

e Block artifacts arising from independent patch-based
judgements.

e Sensitivity to misregistration, as the majority of
approaches presume aligned inputs.

4.4. Deep Learning Fusion Methods

The last few years have seen a paradigm shift in MMIF
research, with deep learning shaping into an enabler of
automated multimodal fusion through end-to-end learning
architectures. Although Deep Neural Networks (DNNSs)
have yielded exceptional results in learning multi-level
feature representations from raw image data, the architects
of the networks are finding it difficult to give them
meaningful names. Notable compositions of DNNs have
been CNNs, U-Nets, and Generative Adversarial Networks
(GANSs). The training objective of these models incorporates
optimal structural alignment, maintaining semantic

information, and enhancing disease identification.

The initial implementation of CNNs in medical image
fusion was presented by Liu et al. [56], exhibiting superior
performance as compared to spatial and transform domain
approaches. CNNs' design effectively extracts spatial and
textural information, yet they necessitate extensive
annotated datasets and intricate tuning processes. Yu Liu
et al. [63] emphasized the dual roles of fusion rules and
activity level estimation, using local filters and clarity
maps to guide the amalgamation of high-frequency
features. Gibson et al. [64] insisted upon the importance of
deep networks for neurological diagnosis through pixel-
level fusion.

Xia et al. [65] accomplished a significant advancement
by integrating multiscale decomposition with CNNs,
facilitating  high/low-frequency discrimination and
enhanced multi-resolution fusion. Wang et al. [66]
employed Siamese CNNs to create activity-guided weight
maps, resulting in structurally intricate fused images. To
overcome batch processing restrictions, Li et al. [67]
created CNN-based frameworks that facilitated real-time,
multimodal fusion, therefore improving efficiency and
detail retention. These approaches provided practical
utility in clinical environments requiring simultaneous
processing of many images. The fusion approach using
CNN and autoencoders is depicted in Fig. (14).

Chuang et al. [68] introduced a fusion framework that
integrated U-Net and Autoencoder architectures (FW-
Net), where the encoder-decoder configurations exhibited
U-Net’s skip connections. The design, initially limited to
CT-MR]I, has the potential for future PET-MRI and SPECT
fusion. Kumar et al. [69] examined the utilization of CNNs
for thermal-visual fusion in remote sensing, showing cross-
domain relevance. Shafai et al. [70] introduced a hybrid
fusion technique in which CNNs integrated three images
using traditional methods, leading to less redundancy and
enhanced semantics.

To address the issues of semantic degradation in fused
outputs, Ghosh [71] introduced a dual U-Net FW-Network
that prioritized semantic-level fusion. This approach
markedly enhanced clinical utility in disease localization
and segmentation. Deep learning-based image fusion is a
powerful paradigm that provides excellent visual fidelity,
task adaptability, and end-to-end automation. However,
accessible data sets, interpretable models, and the creation
of computationally efficient architectures that work across
modalities are necessary for the advancement.
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A CNN-based multimodal fusion approach designed for
oncology not only succeeded in improving diagnostic
accuracy but also outperformed current methods in both
subjective and objective metrics. Due to their generative
properties, GANs can create high-resolution fused images
that preserve both anatomical structure and functional
intensity. The dependence of such models on large sets of
labeled data and their tendency to overfit limited data
variability are serious issues. The lack of interpretability is
also a concern for these models in clinical settings. Fig.
(15) demonstrates the domain-wise publication trends
across Web of Science, in multimodal image fusion from
2000 to 2024. It indicates the rapid proliferation of deep
learning and hybrid domains in this period. Driven by the
endorsement of CNNs, U-Nets, and GANs, the adoption of
deep learning methodologies has shown remarkable
expansion. The explosion in growth indicates a shift in the
sphere towards using data-driven fusion techniques,
characterized by a strong understanding and fusion of
intricate anatomical and functional relationships.

At the same time, the development of hybrid approaches
using such spatial, frequency, and deep learning
approaches is relatively stable, demonstrating their ability
to handle the dissimilar nature of medical data. Due to their
modular structure, these techniques provide superior
flexibility and precision, which improves overall fusion
performance. Collectively formed by these advances, these
fields have outperformed traditional approaches and
indicate a shift towards smarter, more holistic fusion
methods for medical applications. MMIF's future research
appears to be majorly focused on DL-based and hybrid
techniques, especially where complex cases of oncology and

neuroimaging are involved. The key contributions from DL
are presented in Table 9.

4.5. Hybrid Domain

To benefit from diverse domains and tend towards their
minimal negative effects, hybrid fusion approaches have
attracted much attention. Such approaches utilize specific
domain expertise, such as NSCT for frequency analysis and
CNNss for feature extraction, or the use of neural networks.
Simultaneously managing the spatial, frequency, and
contextual information, hybrid systems are capable of
creating informative fused images.

Chen Y [72] established a foundational framework by
combining Nonsubsampled Contourlet Transform (NSCT)
and Dual-Tree Complex Wavelet Transform (DTCWT), which
was supplemented by Pulse-Coupled Neural Networks
(PCNN) for the creation of composite images. This
represented a crucial advancement in integrating hand-
crafted and adaptive transformations to tackle challenges
such as image noise and resolution discrepancies. Wang et
al. [73] improved diagnostic precision by employing NSST
and adaptive decomposition frameworks that consider
high/low frequency layers and dynamic textural features,
respectively. These works acknowledged that conventional
static decomposition inadequately reflects contextual
differences across modalities. Bhateja et al. [74] advanced
the hybrid approach by introducing shearlet and NSCT-
based fusion for PET/SPECT, MRI, and CT images, including
contrast enhancement and weighted PCA to preserve
multispectral integrity. Du et al. [75] and Zhao et al. [76]
tackled modality-specific inconsistencies by developing
distinct methodologies for MRI and PET, thereby enhancing
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fusion accuracy through edge-based weighting.
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Table 9. Key contributions from deep learning.

Study

Methodology

Key Contributions

Liu et al. [56]

Convolutional Neural Networks
(CNNs)

Exhibited better performance as compared to spatial and transform domain methods, highlighting
the capability of CNN to extract spatial and textural characteristics.

Yu Liu et al. [63]

CNNs with fusion rules and activity
level estimation

Implemented local filters and clarity maps to facilitate the integration of high-frequency features,
enhancing fusion quality.

Gibson et al. [64]

Deep networks

Highlighted the significance of deep learning in neurological diagnosis and enhancing fusion at the
pixel level for diagnostic accuracy.

Xia et al. [65]

Multiscale decomposition combined
with CNNs

Better division of high/low-frequency components, facilitating detailed and multi-resolution fusion.

Wang et al. [66]

Siamese CNNs with activity-guided
weight maps

Increased structural richness in final fused images via activity-guided weight maps. Enhancing the
retention of essential features

Lietal. [67]

CNN-based

Concentrated on real-time processing of multimodal images, providing practical utility in clinical
settings.

Chuang et al. [68]

Fusion U-Net and Autoencoder (FW-
Net)

A hybrid encoder-decoder structure was introduced, with potential for further expansion to PET-
MRI and SPECT fusion.

Kumar et al. [69]

CNNs

Proposed cross-domain applications, using CNNs for thermal-visual fusion.

Shafai et al. [70]

Hybrid CNN-based fusion pipeline

Combined three images using traditional approaches, providing a reduction in redundancy and
enhancing the semantic quality in fused outputs.

Ghosh [71]

Dual U-Net FW-Network

Concentrated on enhancing disease localization and segmentation by addressing semantic
degradation in fused outputs.

Magsood and Javed [77] employed two-scale decom-
position with spatial gradients to enhance edges. Wang Z
et al. [78] and Liu Y et al. [79] employed adaptive sparse
coding and total variation transformations, enhancing
detail retention while diminishing high-frequency noise.
Yadav [80] utilized independent and principal component

analysis using a wavelet framework but observed residual
noise and artifacts. In his study, Nath [81] showed that the
Stationary Wavelet Transform (SWT) surpasses the
standard Discrete Wavelet Transform (DWT) in terms of
entropy preservation. Huang et al. [82] emphasized that
while hybrid models enhance established frameworks,
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problems persist, especially in feature extraction and color
distortion. These constraints stimulated investigation into
hybrid deep learning strategies. Harmeet et al. [83]
integrated ANFIS with cross-bilateral filtering, resulting in
enhanced entropy (2.92), and suggested volumetric fusion
for future neuroimaging applications. Harpreet et al. [84]
conducted a systematic review emphasizing the necessity
for precise, reliable, and interpretable fusion techniques.

Polinati et al. [85] and Li et al. in 2021 [86] introduced
innovative frameworks employing Variational Mode
Decomposition (VMD), local energy gradients, and bilateral
filtering, all designed to improve clarity and reduce
luminance deterioration. Zhu et al. [87] and Alseelawi et al.
[88] concentrated on enhancing NSST-DTCWT-based fusion
techniques to achieve equilibrium between texture and
structural integrity. Alseelawi’s work prominently
highlighted velocity and visual excellence, using PCNN as a
guiding framework. Kalamkar and A Mary [89] utilized
transfer learning with DWT, attaining enhanced structural
similarity index values. Goyal and Dogra [90] developed a
cross-bilateral, edge-preserving fusion filter that reduces
artifacts while improving image quality. Likewise, Shafai et
al. [91] amalgamated CNN with three traditionally fused
image sets to improve overall image quality and diagnostic
efficacy. Zhou et al. [92] tackled issues of brightness
degradation and detail retrieval by the application of NSST
and Improved Structure Tensor (IST) decomposition,
resulting in enhanced contrast while differentiating
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smoothing, edge, and corner layers.

Kittusamy et al. [93] |utilized Joint Sparse
Representation (JSR) and NSCT to attain enhanced high
perceptual clarity in MRI-CT fusion. Dinh [94, 95]
formulated two complementary models to address
inadequate contrast and edge degradation through a three-
scale decomposition and local energy-based fusion rules.
Balakrishna et al. [96] evaluated nine DWT-based
combinations, validating the method’s efficacy in the
detection of abnormalities and clinical planning.
Moghtaderi et al. [97] suggested a Multilevel Guided Edge-
Preserving Filtering (MLGEPF) technique that combined
computational expense with structural accuracy. Zhao et al.
[98] proposed a novel method based on three-scale
frequency decomposition along with SSIM-optimized
feature blending, which significantly facilitates the process
of fusing MRI and PET images for brain tumor examination.
Various hybrid combinations, along with their advantages
and disadvantages, are described in Table 10.

Table 11 signifies the evolving emphasis of research
within Multimodal Medical Image Fusion (MMIF) over
three distinct phases. Spatial domain methods prevailed in
the initial period but have since been replaced by more
sophisticated techniques. Frequency domain techniques
have shown significant output growth and have sustained
stability. Sparse representation techniques have
transitioned from minimal utilization in their first stages to
considerable significance in recent years.

Table 10. Various hybrid combinations along with advantages and disadvantages.

Author/ Year

Hybrid Combination

Advantages

Disadvantages

Chen'Y, 2018 [72]

NSCT + PCNN

Improves contrast; effective for multi-resolution
fusion

Complex; sensitive to noise levels and
parameter tuning

Wang et al., 2018 [73]

Adaptive Decomposition + Texture
Integration

Dynamic layer integration improves color and
texture representation

Requires rule tuning; may introduce
artifacts

Bhateja Vet al., 2018 [74]

Shearlet + NSCT + Weighted PCA

High spectral-spatial fidelity; suited for
PET/CT/MRI

Computationally intensive; color
normalization required

Du]Jetal., 2019 [75]

Separate Decomposition for MRI
and PET

Customized decomposition maintains modality-
specific features

High design complexity; lacks real-time
scalability

Wang Z et al., 2020 [78]

Adaptive Sparse + Laplacian
Pyramid

Minimizes noise in high-frequency ranges;
adaptive sparsity

May be unstable with varying image types

Yadav, 2020 [80]

Wavelet + ICA/PCA

Elementary; broadly applicable; improves
interpretability

Noise sensitivity; potential overfitting

Nath B Ashwa, 2020 [81]

SWT vs DWT

SWT retains greater energy and detail
compared to DWT

Requires precise coefficient tuning

Harmeet K et al., 2021
[83]

ANFIS + Cross-Bilateral Filter

Enhanced entropy; edge detail maintained

Requires ANFIS model training and tuning

Shafai et al., 2022 [91]

CNN + Multi-Input Fusion

Efficient and effective; reduces redundancy

Quality depends on pretrained models

Kalamkar and A Mary,
2022 [89]

Transfer Learning + DWT

Improved structural similarity and
generalization

Training requires large datasets

Zhou et al., 2022 [92]

NSST + IST (Improved Structure
Tensor)

Maintains brightness and local structure

Complex to implement; computationally
heavy.

Kittusamy et al., 2023
[93]

JSR + NSCT

Elevated contrast and detail retention in soft
tissues

Requires dictionary learning; time-
consuming

Dinh, 2023 [94]

Three-Scale Decomposition + Local
Energy

Prevents information loss in edges; enhances
contrast

Parameter tuning is crucial; risk of blur

Moghtaderi et al., 2024
[97]

Guided Edge-Preserving Filtering
(MLGEPF)

Prompt and reliable; balances performance and
quality

Filter design and scale sensitivity

Zhao et al., 2024 [98]

Guided Fusion (Smoothing + Global

Optimization)

Maintains texture, noise, and structure clearly

May overlook fine details if the structure is
misclassified
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Table 11. Web of Science records illustrate the evolution of domain usage in MMIF.

Domain Early Phase (2000-2010) Growth Phase (2011-2017) Boom Phase (2018-2024)
Spatial High Medium Declining

Frequency Medium High Stable

Sparse Representation Very Low Medium High

Deep Learning None Emerging (post-2016) Dominant

Hybrid Low Emerging Rising sharply

Table 12. Comparative analysis of MMIF domains -

advantages, limitations, and applications.

Domain

Advantages

Limitations

Typical Applications

Spatial Domain
[19]

Elementary execution, Better color
representation. Rapid computation

Edge blurring, Low SNR, Spectral
distortion

SPECT-MRI fusion using HSV- X-ray/CT overlays

Frequency Domain [50]

Elevated SSIM- Good texture and edge
preservation

Complex registration, High
computational cost

Tumor localization (MRI-PET)- Brain mapping
using NSCT and Laplacian Pyramid

Sparse Representation
[60, 61]

Enhanced contrast clarity-Concise
representation, Good noise removal

Artifacts from basis mismatch, Edge
degradation

CT-MRI brain fusion utilizing K-SVD- Dictionary
learning for tumor detection

Deep Learning Automatically acquires complex features,

Requires large datasets, Risk of

U-Net fusion in COVID detection- GANs for

[4, 64] High fusion accuracy overfitting whole-body PET/CT integration
Hybrid Domain Combines domain strengths, High Increased model complexity, NSCT + PCNN fusion- DWT-IFS-PCA in
[83, 88] robustness Difficult tuning multimodal cancer detection

Deep learning was nearly non-existent before 2016,
but has become the dominant methodology. Hybrid
approaches, which amalgamate multiple techniques, have
experienced significant expansion, signifying a trend
towards integrative and adaptive fusion approaches. A
comprehensive analysis of Multimodal Medical Image
Fusion (MMIF) domains emphasizing their strengths,
weaknesses, and principal application areas is highlighted
in Table 12.

5. APPLICATIONS OF IMAGE FUSION IN CLINICAL
MEDICINE

This section highlights the integration of structural
medical imaging modalities through fusion techniques and
their clinical applications, especially in surgical planning,
oncology, orthopedics, and neurosurgery. The following
examples highlight recent advances and use cases where
image fusion has improved diagnosis, treatment accuracy,
and procedural efficiency.

5.1. Surgical Planning Using Synthetic CT from MRI

A recent study has explored the feasibility of generating
synthetic Computed Tomography (CT) images of the lumbar
spine from Magnetic Resonance Imaging (MRI) using a
patch-based convolutional neural network. This approach
aimed to support pre-operative planning without exposing
patients to ionizing radiation using deep learning. The study
involved three cases and demonstrated that deep learning-
enabled MRI-to-CT conversion offers high-quality structural
visualization, reducing radiation exposure compared to
conventional CT scans (typically 3.5-19.5 mSv for spine
imaging) [99].

5.2. Orthopedic Implant Design and Additive
Manufacturing

The combination of CT and MRI has also been pivotal in
the design of patient-specific orthopedic implants. These
modalities are employed to capture comprehensive
anatomical data, including size, shape, texture, and bone
density. This facilitates the development of custom implants
and allows for the reconstruction of traumatic bone defects
through additive manufacturing technologies [100].

5.3. Management of Complex Fractures Using Rapid
Prototyping

Fusion imaging has enabled advances in Rapid
Prototyping (RP) and 3D reconstruction, particularly for
complex fractures in anatomical regions such as the joints,
acetabulum, and spine. RP assists surgeons in visualizing
fracture geometry preoperatively, which improves the
accuracy of anatomical reduction and reduces surgical
time, anesthesia duration, and intraoperative blood loss
[101].

5.4. Surgical Effects of Resecting Skull Base Tumors
Using Preoperative Multimodal Image Fusion

A retrospective study was conducted on 47 patients
with skull base tumors. Preoperative CT and MRI data
acquisition were performed using GE AW workstation
software for co-registration, fusion, and three-dimensional
reconstruction of the brain. The surgical plan was
designed based on multimodal images. The application of
the fusion technique provided essential visual guidance in
skull base tumor surgery, assisting neurosurgeons in
accurately planning the surgical incision and precisely
resecting the lesion [102].
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5.5. Trigeminal Neuralgia Treatment with Integrated
Neuro-Navigation

In 13 patients undergoing percutaneous radiofrequency
trigeminal rhizotomy, the fusion of MRI and intraoperative
CT (iCT) images provided improved anatomical delineation
of the trigeminal cistern. This integration supports more
accurate targeting, especially in recurrent cases of
trigeminal neuralgia. The study emphasized the benefits of
fusion-guided neuro-navigation and suggested that longer
follow-ups are needed to assess long-term therapeutic
efficacy [103].

5.6. Frameless
Gamma Knife Icon

In a clinical series of 100 patients, MRI-CBCT (Cone
Beam CT) fusion was utilized for frameless stereotactic
radiosurgery using the Gamma Knife Icon. MRI provided
superior soft tissue contrast, while CBCT served as the
baseline for stereotactic registration. The adaptive dose
distribution was computed based on the patient's real-time
geometry after fusion, optimizing treatment accuracy. This
method overcomes the limitations of traditional CT-guided
radiotherapy by ensuring better alignment of tumor and
anatomical landmarks [104, 105].

Stereotactic Radiosurgery with

5.7. Image Fusion in Precision Medicine for
Oncology

In the context of precision oncology, fusion imaging
technologies are increasingly used to enhance diagnostic
accuracy and individualized treatment planning. The
integration of CT, MRI, and PET enables better
visualization of tumor morphology and metabolic activity,
facilitating more accurate localization and classification of
malignancies. Such multimodal fusion approaches are
pivotal in improving therapeutic outcomes and reducing
harm to healthy tissue [106].

5.8. Image Fusion in the Diagnosis and Treatment of
Liver Cancer

The rapid advancement of medical imaging has
facilitated the effective application of image fusion
technology in diagnosis, biopsy, and radiofrequency
ablation, particularly for liver tumors. Employing image
fusion technology enables the acquisition of real-time
anatomical images overlayed with functional images of the
same plane, thereby enhancing the diagnosis and treat-
ment of liver cancers. This study provides a compre-
hensive examination of the fundamental concepts of image
fusion technology, its application in tumor therapies,
specifically for liver cancers. It finishes with an analysis of
the limitations and future prospects of this technology
[107].

6. IMAGE QUALITY METRICS IN MEDICAL IMAGE
FUSION

The assessment of medical image fusion is crucial for
verifying the efficacy of fusion algorithms. Image quality
measures evaluate the visual integrity, information
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retention, and diagnostic value of the fused image. These
assessments are conducted utilizing either subjective or
objective approaches [108, 109].

6.1. Subjective Evaluation

Subjective analysis entails expert evaluators who assess
the images according to their visual characteristics, such as
object clarity, spatial detail, geometric consistency, and
color equilibrium. This method, although indicative of
human perception, is compromised by observer bias,
environmental reliance, and lack of reproducibility,
rendering it less reliable for quantitative comparison.

6.2. Objective Evaluation

It utilizes the mathematical and statistical metrics to
measure image quality quantitatively. These metrics yield
reliable, quantifiable, and algorithm-independent outcomes,
making them crucial for the consistent and automated
validation of fusion approaches. They are further
categorized into two categories such as those employing a
reference image and those without a reference image, as
depicted in Table 13, with each parameter demonstrating
distinct characteristics. The objective image fusion
performance characterization utilizing the gradient
information is also taken into account. This provides an in-
depth analysis by assessing total fusion performance, fusion
loss, and fusion artifacts as represented in Table 14. It is
noted that the total fusion performance is depicted by the
sum of these three, and the result is unity, as shown in the
formula [110-113].

7. EXPERIMENTAL SETUP AND DISCUSSION

In this section, a comprehensive evaluation of eight
multimodal medical image fusion techniques, LEGFF,
FGF-XDOG, MDHU, FDO-DPGF, CSMCA, S-ADE, PCLLE-
NSCT, and NSST-AGPCNN, is conducted for dataset 1
[114] utilizing diverse quantitative criteria to evaluate
information content, image quality, edge preservation, and
noise reduction, and has been described in Table 15 along
with mean and standard deviation. Of these evaluated
approaches, LEGFF exhibited the highest entropy of 6.86
and average gradient of 7.06, signifying enhanced
information richness and edge definition, while the mean
entropy value is 6.44 + 0.35. CSMCA demonstrated
superior image quality, attaining the highest PSNR (63.28)
and the lowest MSE (0.0305), indicative of exceptional
image reconstruction with minimum error. The spatial
frequency values, which assess image detail, showed a
moderate spread (17.79 + 0.56), demonstrating that
CSMCA and LEGFF retained excellent textural detail. In
contrast, standard deviation results have revealed that
LEGFF and S-ADE maintained a significant contrast. FGF-
XDOG and S-ADE achieved the best visual information
fidelity (VIF ~0.88), indicating superior perceptual quality.
PCLLE-NSCT exhibited superior structural similarity,
achieving a reduced spatial correlation difference (SCD =
1.72) compared to others. The Correlation Coefficient (CC)
analysis indicated a preference for CSMCA and FDO-DPGF
(CC ~0.698), emphasizing their robust correspondence
with reference images.
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Table 13. MMIF Metric with a reference image - definitions and interpretations.

Metric Name Description Formula / Expression -
Average Pixel . . . . T — M n . [110,
Intensity (API) Measures image contrast by computing average intensity values. | APT =F E:‘: 14ij=1 f(I ,j} 111]
L Measures the contrast or spread of the pixel intensity values M ol cec:: -
il L [ —-F
(Sst;ldard Deviation around the mean intensity. A higher SD indicates more variation sD= JE’ =1 EJ—ll‘f o [112]
and, therefore, more detail and contrast. mn

Evaluates the overall clarity and detail of the image by computing AG=

. the average magnitude of the gradients in the image. To assess

Average Gradient the sharpness and clarity of an image and quantify the overall s ; P (i s (i 2.1z |[112]
(AG) : age an Ll FEA-FUE+ L) + ((Fla)—Flg+0) )Y

contrast by measuring the rate of intensity change across

adjacent pixels. i
Entropy () highor entropy value ndicates & icher and more complox mage. | FL = - Zarecs P 1082 (P ) (113
Mutual Information |Assesses shareq information between source and fused images. It MI=MI.. + MI [110,
(MI) should have a high value for better fusion. AF EF 113]
Information Evaluates the symmetry of information between fused and input ' M1
Symmetry (FS) images. § v b Fs=2- |M_-:F —05| (1101
It gives similarity in the small structures between the original and
Correlation reconstructed images, where a higher value of correlation means
Coefficient (CC) more information is preserved. Determines the linear relationship | (CiC = ("':1.!? + ?:ur} /2 (111
between input and fused images.
Spatial Frequency |Measures the overall activity level or texture of an image, -
(SF) combining the row and column frequency components. SF=+RF*+ CF* (113
Table 14. MMIF metric without a reference image - definitions and interpretations.
Metric Name | Description Formula / Expression | Citations
Qab/f Quantifies retained information from the source to the fused image. Qab/f +Lab/f + Nab/f =1|[110, 112]
Lab/f Measures information loss during fusion. Qab/f +Lab/f + Nab/f =1|[110, 112]
Nab/f Estimates artifacts or noise introduced after fusion. Qab/f +Lab/f + Nab/f =1|[110, 112]
Table 15. Quantitative Evaluation of various MMIF techniques on MRI and CT images for data set 1.
Technique s
LEGFF | FGF-XDOG | MDHU | FDO-DPGF | CSMCA | S-ADE | PCLLE-NSCT | NSST -AGPCNN Mean* SD
Evaluation Parameter l
EN 6.857 6.407 5.992 6.789 6.378 | 6.005 6.803 6.296 6.44 = 0.35
SF 18.72 17.37 18.32 17.36 18.13 | 17.85 17.16 17.36 17.79 + 0.56
SD 59.48 59.74 59.38 53.64 51.91 | 58.99 57.39 49.40 56.24+ 4.03
PSNR 61.85 61.55 61.53 62.72 63.27 | 61.58 61.93 63.55 62.26 = 0.82
MSE 0.0424 0.0454 0.0456 0.0347 0.0305 | 0.0451 0.0416 0.0321 0.04 +0.01
MI 3.046 4.710 5.854 3.074 2.328 | 5.795 3.201 1.489 3.70 £ 1.60
VIF 0.776 0.885 0.874 0.869 0.652 | 0.884 0.797 0.483 0.78 £ 0.14
AG 7.059 6.440 6.511 6.332 6.574 | 6.460 6.551 6.182 6.51 £ 0.25
cc 0.671 0.686 0.666 0.698 0.698 | 0.663 0.652 0.645 0.67 £ 0.02
SCD 1.823 1.898 1.841 1.766 1.746 | 1.831 1.724 1.453 1.76 £ 0.14
Qabf 0.731 0.774 0.778 0.771 0.654 | 0.776 0.739 0.600 0.73 £ 0.07
Nabf 0.018 0.021 0.024 0.012 0.020 | 0.027 0.025 0.018 0.02 £ 0.00

FGF-XDOG and MDHU attained the highest edge-based Information (MI), crucial for evaluating modality comple-

similarity (Qabf >0.77), indicating efficient edge retention, mentarity, showed significant variance (mean = 3.7 + 1.5),
which is essential in diagnostic imaging. FDO-DPGF with MDHU and S-ADE outperforming. Visual Information
demonstrated the lowest noise-based similarity (Nabf = Fidelity (VIF) and Qabf. NSST-AGPCNN and LEGFF

0.0126), indicating exceptional noise suppression. Mutual regularly score well across most criteria, demonstrating
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superior fusion quality. Future studies should provide
larger datasets with repeated trials to allow for more
rigorous statistical inferences.

The visual results in Fig. (16) also depict similar results
where the source image (a) is a T1-weighted MRI image
characterized by the dark appearance of cerebrospinal fluid
and the high contrast between gray and white matter. CSF
appears hypointense owing to the diminished signals on T1
T1-weighted sequence. T1-weighted scans offer superior
anatomical detail and are commonly employed to evaluate
brain morphology and the integrity of cerebral structures.
The source image (b) is a non-contrast computed
tomography scan of the brain, highlighting the bony
content. CT scans are highly effective in identifying acute
bleed, cerebral infarcts, fractures, and calcifications owing
to their sensitivity to dense tissues such as bone. Bone
exhibits hyper-density (white) because of elevated X-ray
attenuation as compared to soft tissue. The images from (c)
to (j) are the final fused images of these source images
using the respective technique.

Table 16 provides an evaluation for dataset 2 [114],
using the same set of techniques, and demonstrates
diverse efficacy across essential quantitative parameters.
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The average Entropy (EN) is 5.30 + 0.09, reflecting
consistent information content with minimal variance.
Spatial Frequency (SF), which is an indicator of textural
detail, showed greater variation (20.38 + 1.66), with
LEGFF achieving the highest score (23.77), suggesting
better edge detail retention.

Standard Deviation (SD) and PSNR were also stable,
with PSNR averaging 68.44 *= 0.52 dB, indicating
excellent noise suppression and fidelity. The Mean Square
Error (MSE) values remained low (0.01 =+ 0.00),
reinforcing the high-quality reconstruction by all
techniques, particularly NSST-AGPCNN (lowest MSE =
0.0074).

Mutual Information (MI) values showed moderate
variance (3.87 = 0.61), with S-ADE standing out as having
the highest MI (4.976), highlighting its capacity to retain
complementary modality features. VIF and CC metrics also
revealed strong visual and structural correlation,
particularly for FDO-DPGF and LEGFF. All techniques
performed well with minor variability across metrics.
Techniques like NSST-AGPCNN and S-ADE demonstrated
superior balance in contrast enhancement, edge retention,
and structural fidelity.

Fig. (16). Qualitative results for MRI/CT images. Dataset 1 (a) MRI image, (b) CT image, (c¢) LEGFF, (d) FGF-XDoG, (e) MDHU, (f) FDO-
DPGF, (g) CSMCA, (h) S-ADE, (i) PCLLE NSCT, (j) NSST AGPCNN.
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Table 16. Quantitative evaluation of various MMIF techniques on MRI and CT images for data set 2.

Technique )
LEGFF | FGF-XDOG | MDHU | FDO-DPGF | CSMCA | S-ADE | PCLLE-NSCT | NSST -AGPCNN Mean + SD
Evaluation Parameter l

EN 5.336 5.322 5.210 5.262 5.426 | 5.317 5.382 5.161 5.30 £ 0.09

SF 23.77 20.43 20.40 18.12 20.20 | 20.13 18.91 21.07 20.38 £ 1.66

SD 61.97 62.11 61.12 57.59 56.33 | 61.59 58.77 55.31 59.35 £ 2.71

PSNR 68.36 68.26 68.01 68.24 68.82 | 67.76 68.63 69.42 68.44 + 0.52

MSE 0.0094 0.0096 0.0102 0.0097 0.0085 | 0.0108 0.0088 0.0074 0.01 £ 0.00

MI 3.426 4.088 4.378 4.118 3.233 | 4.976 3.618 3.132 3.87 £ 0.63

VIF 0.577 0.594 0.625 0.870 0.528 | 0.682 0.625 0.517 0.63 £0.11

AG 6.397 5.580 5.212 4.723 5.754 | 5.355 5.348 5.681 5.51+0.48

cC 0.926 0.927 0.914 0.903 0.914 | 0.910 0.919 0.923 0.92 £ 0.01

SCD 1.249 1.268 1.106 0.730 0.769 1.114 0.992 0.790 1.00 + 0.22

Qabf 0.595 0.609 0.605 0.609 0.546 | 0.645 0.585 0.583 0.60 £ 0.03

Nabf 0.017 0.027 0.018 0.0153 0.028 | 0.006 0.035 0.0203 0.02 £ 0.01

(@

()

Fig. (17). Qualitative results for MRI/CT images Date set 2 (a) CT image, (b) MRI image, (c¢) LEGFF, (d) FGF-XDoG, (e) MDHU, (f) FDO-

DPGF, (g) CSMCA, (h) S-ADE, (i) PCLLE NSCT, (j) NSST AGPCNN.

The visual results for dataset 2 are depicted in Fig. (17),
where the source image (a) is a computed tomography scan
of the brain proficient in assessing intracranial bleed and
cerebral fractures. The image provides a clear depiction of
the bone architecture with no evident indications of
structural abnormalities. The source image (b) is a T2-
weighted MRI scan of the brain, illustrating the
differentiation of gray and White matter, and is marked by
bright cerebrospinal fluid. The imaging modality is effective
for identifying pathological alterations, including edema,
demyelination, and infarctions. The images from (c) to (j)
are the final fused images of these source images using the
respective technique.

7.1. Research Trends in Modality Integration

The growing interest in MMIF studies from 2015 to
2024, analyzed according to the three most commonly
used modality groups, MRI-PET, MRI-CT, and
MRI-SPECT, is illustrated in Fig. (18). MRI-PET fusions
report the greatest number of publications, with a
significant boost in 2021, representing high influence in
oncology and neuroimaging. The constant growth of
MRI-CT literature (although its volume is less compared to
MRI-PET) indicates growing use for surgical planning, and
tasks where both soft and hard tissue information is
needed.
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Research Trends in Modality Integration (2015-2024)
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Fig. (18). Research Trend according to multi-modality combinations (WOS).

The MRI-SPECT fusion approach is the least
discussed, possibly due to the lower spatial resolution and
the comparatively narrower use of SPECT compared to
PET. The possible correlation of periodic changes in
MRI-PET and MRI-CT domains with the emergence of
new advances, such as convolutional neural networks or
transformer models, indicates that these improvements
have likely reinforced the fusion and registration
processes. The data shows an increasing interest in hybrid
imaging as the main research topic, highlighting the
clinical necessity for accurate diagnostics based on the
integration of complementary modalities.

8. KEY CHALLENGES AND LIMITATIONS

8.1. Data Scarcity and Imbalance in Public Datasets

The foundation of any robust MMIF model is a
sufficiently large and diverse dataset. However, available
multimodal image datasets such as AANLIB, ADNI, TCIA,
and MIDAS lack balance in organ representation, modality
pairing, and demographic diversity. While these
repositories provide aligned pairs (e.g., MRI-PET), they
often suffer from incomplete labeling and variation in
acquisition protocols. For example, Venkatesan et al. [15]
emphasized that most fusion research focuses on brain
datasets (MRI-CT), leaving thoracic, abdominal, and
musculoskeletal fusions underrepresented. The imbalance
leads to biased models that cannot generalize across

anatomical regions. Moreover, annotating multimodal
images, particularly PET and SPECT, requires domain
expertise and is cost-intensive, limiting supervised
learning approaches. Recent works, such as those by
Tirupal et al. [8], propose the use of fuzzy sets and
unsupervised learning to overcome the lack of labels,
while Dinh [94, 95] explores decomposition techniques to
create proxy supervision.

8.2. Registration and Inter-modality Inconsistency

Accurate registration is pivotal in MMIF, as
misalignment between modalities can propagate errors into
every subsequent fusion stage. Unlike unimodal
registration, where intensity similarities guide optimization,
multimodal images exhibit diverse characteristics (e.g., CT
for density, MRI for soft tissues, PET for metabolism),
making intensity-based alignment ineffective. Errors in
registration introduce artifacts, structural shifts, and
contrast mismatches, especially at organ boundaries. Goyal
et al. [90] and Ibrahim et al. [109] report that deformable
and affine transformations often underperform when the
inter-modality gap is large, such as in PET-MRI or
SPECT-CT fusion. Furthermore, hybrid methods that
employ wavelet or Laplacian transforms are highly sensitive
to minor misregistrations, causing blur or duplication of
anatomical features. Although deep-learning-based spatial
transformers, such as the Swin Transformer by Ghosh [71],
offer improved alignment, these solutions are
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computationally expensive and poorly validated across
multiple organs. Thus, the modality inconsistency and lack
of robust, generalized registration algorithms significantly
hinder the clinical reliability of MMIF systems.

8.3. Computational Overhead in Deep Learning-
based MMIF

While Deep Learning (DL) methods, particularly CNNs,
GANs, and U-Nets, have revolutionized image fusion, they
bring substantial computational burdens. Training these
models requires massive datasets, high-end GPUs, and
time-intensive tuning. Li et al. and Zhang et al. [60, 61]
showed that deep CNNs produce sharper and semantically
richer fused images, but the cost of training (over 20
million parameters) and risk of overfitting persist. These
limitations restrict the practical deployment of MMIF in
real-time or edge-based medical devices like portable
ultrasound or emergency CT units. Efforts to develop
lightweight architectures, such as Mobile Net or efficient
transformer hybrids, have been partially successful. For
instance, Kalamkar & Geetha [89] propose transfer
learning-based MMIF using pretrained models to reduce
training time. However, performance degradation and
sensitivity to modality shifts are still major issues. Hybrid
DL models, such as PCNN + NSCT or GANs over NSST
coefficients, further increase architectural complexity,
which limits scalability and increases latency during
clinical inference.

8.4. Ethical and Privacy Concerns in Multimodal
Data Use

The use of medical images, especially in a multimodal
and longitudinal context, raises significant privacy and
ethical issues. Most MMIF datasets are derived from
patients with chronic or terminal conditions, making de-
identification difficult due to unique anatomical signatures
(e.g., tumors or prostheses). Compliance with GDPR,
HIPAA, and institutional IRB guidelines restricts dataset
sharing. El-Shafai et al. [70] observed that fewer than 20%
of fusion studies in recent years could access external
datasets, limiting generalizability and leading to model
bias. Federated learning, as explored in Goyal et al. [90],
is a promising avenue to train models across silos without
data exchange. However, challenges in harmonizing
modalities, synchronizing update cycles, and addressing
vulnerability to gradient attacks remain. Ethically, there's
a lack of transparency in fusion models. Black-box CNNs
may produce composite images that suppress or
misrepresent subtle pathologies. There are also legal
uncertainties in attributing diagnostic responsibility when
Al-generated fusion images are used clinically. To address
this, future MMIF research must include explainable Al
(XAI) methods, probabilistic uncertainty maps, and formal
ethical frameworks that define accountability for Al-
assisted diagnostics [115]. While the field of MMIF
continues to evolve rapidly, these four key challenges,
data imbalance, registration inconsistency, computational
overhead, and ethical constraints, remain persistent
obstacles. Addressing these will require interdisciplinary
collaboration between data scientists, radiologists,
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ethicists, and software engineers. The integration of
robust registration models, edge-efficient architectures,
federated training schemes, and ethically compliant data
pipelines will be vital to unlocking MMIF’s full potential.

9. FUTURE RESEARCH DIRECTIONS IN
MULTIMODAL MEDICAL IMAGE FUSION

9.1. Explainable AI (XAI) in MMIF

Explainable artificial intelligence is a technique for Al-
powered diagnosis and analysis that ensures features such
as ethics, transparency, and accountability in the traditional
approach to Al This will lead to outcome tracing and model
improvements in health care. EXAI relies on feature
extraction to make the model more explainable and
interpretable. EXAI proposed a self-explanatory framework
based on design principles for understanding and
predicting the behavior of ML/DL models. Although deep
models such as CNNs and Transformers outperform
traditional algorithms, their “black-box” nature hinders
clinical trust. Recent work integrates attention maps, Layer-
wise Relevance Propagation (LRP), and Grad-CAMs into
MMIF pipelines, allowing radiologists to verify the influence
of fused features during diagnostics [115, 116].

9.2. Quantum Image Fusion

Quantum computation in medical image processing has
improved edge detection, segmentation, watermarking,
encryption, and classification. A quantum edge detection
technique using superposition and fuzzy entropy can better
detect strong and weak edges. Automatic hippocampal
segmentation using a Quantum-Inspired Evolutionary
Algorithm (QIEA) yielded good correlation between
segmented and microscopic images. A hybrid technique
using QPSO and fuzzy k-nearest neighbours enhances
cervical cancer cell classification on the Herlev dataset for
feature selection and classification. The hybrid method
decreased features from 17 to 7, outperforming Naive
Bayes and SVM with a 2% to 11% increase in accuracy.
These inventions show how quantum computing might
improve medical image analysis and diagnosis precision
[117].

9.3. Federated and Privacy-preserving MMIF

Machine learning algorithms learn to solve problems
autonomously based on the data provided to them, but
they require extensive training to do so. Personal data in
training datasets for Al systems, especially for health care
applications, must be considered. Data from special
categories (including health data) requires more
safeguards than common data under the General Data
Protection Regulation (GDPR). Al developers and users in
health care are especially affected by this issue. With
increasing data privacy regulations (e.g., GDPR, HIPAA),
centralized MMIF training on patient data faces ethical
and legal barriers. Federated learning frameworks (e.g.,
FL-MedFuseNet) enable MMIF model training across
distributed hospital nodes without sharing raw data. This
decentralized approach preserves privacy and supports
continual learning from real-world clinical inputs [118].
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9.4. Robetic Surgery and Smart Operating Rooms

The integration of MMIF into Al-assisted robotic
surgeries is a fast-growing field. As the population ages,
the prevalence of spinal degenerative illnesses such as
lumbar disc herniation and spinal stenosis increases the
need for accurate and safe spinal operations. The spine
intricacy makes surgery difficult, making robotic help
invaluable. Pedicle screw implantation is performed using
surgical robots like TiRobot, Mazor, Da Vinci, ROSA,
Excelsius GPS, and Orthbot, which enhance precision,
reduce operative time, decrease the chances of
hemorrhage, and minimize radiation exposure. These
approaches use unimodal CT scans, which cannot detect
nerves and intervertebral discs. The incorporation of a
multimodal image fusion (CT/MR)- based software system
for intraoperative navigation expands the horizons of
robotic spinal surgery. Intuitive Surgical’s Da Vinci system
already shows early adoption of MMIF-enhanced visual
pipelines, although this is mostly experimental. Future
research could focus on ultra-low-latency hardware-driven
MMIF solutions embedded into surgical robots. NVIDIA’s
Clara, a GPU-accelerated platform, is used to segment and
diagnose cardiac images in real time. To improve
processing speed and accuracy, the system takes
advantage of powerful DL algorithms explicitly designed
for cardiac imaging. Using rigorous data processing and a
deep learning model, it can perform exact partitioning of
cardiac components and identify positioning defects,
resulting in the diagnosis of rapid heart arrhythmia [119,
120].

9.5. MMIF-based Watermarking for Tele-health
Applications

Watermarking in medical image fusion involves
embedding a hidden signal (such as patient ID, diagnosis
detail, time stamps, or institutional information) into a fused
image generated from multiple modalities. This ensures
date integrity, ownership authentication, and secure
communication in telemedicine or cloud environments.
Embedding of watermark is done by techniques like
Redundant Discrete Wavelet Transform (RDWT), Singular
Value Decomposition (SVD), or NSCT. The integration of
deep learning needs further exploration to create adaptive
and intelligent watermarking methods [121].

CONCLUSION

This comprehensive review concludes that multimodal
medical image fusion (MMIF) is a growing field with
applications and modern techniques that allow the proper
use of all available information, thus contributing to the
improvement of clinical diagnostics. Firstly, the limitations
of unimodal imaging were established, and the clinical need
for combining MRI, CT, PET, and SPECT was explored.
Combining strengths in each modality (by way of fusion)
offers synergistic improvements to their diagnostic
capability while addressing the limitations that each
modality suffers from individually. The mentioned
approaches, spatial and frequency-based fusion methods
such as PCA, DWT, and NSCT, have proved useful in many
early-stage applications owing to their simplicity and speed.
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They are sensitive to noise and often suffer from issues like
edge blurring or spectral distortion. This led to the
development of more advance strategies like sparse
representation, which is more flexible, particularly under
uncertain and noisy imaging conditions. Additionally, when
applicable with multi-scale transforms, sparse coding
improves edge structure and clarity that is necessary for
tumor detection and neurodegenerative diseases. With the
introduction of Deep Learning (DL) and hybrid fusion
models in the field, a paradigm shift has occurred,
drastically improving fusion accuracy and robustness. It is
effectuated by various architectures such as CNNs, U-Nets,
GANs, Swin Transformers, etc. Deep Learning has brought
its weaknesses along, but it has also brought hybrid models
that blend Deep Learning with usual domains to minimize
and compensate for their respective weak points. Moreover,
high-quality datasets (TCIA, ADNI, OASIS, AANLIB) and
evaluation metrics (SSIM, MI, and entropy) are used as a
standard benchmark for MMIF models. The results of
experiments across two datasets in this review highlight the
effectiveness of hybrid and deep learning-based
approaches. Yet, there are still many outstanding issues.
Finding its way into clinical practice is impeded by data
scarcity, registration inconsistencies, the computational
cost of DL models, and the ethical use of necessary patient
data. The promising emerging topics of interest included
federated learning, explainable AI, quantum fusion, and
watermarking in telemedicine. The integration of MMIF
into surgical robotics is another frontier that needs to be
explored. Finally, the findings of this review offer a
fundamental analytical lens with which healthcare
professionals, Al researchers, and developers of MMIF
systems can improve the clinical scalability, interpretability,
and ethics of the systems that are generated. It can be
concluded that the field is rapidly evolving and holds
promise for improving clinical decision-making. MMIF had
demonstrated enhanced diagnostic accuracy by combining
information from multiple sources, improved treatment
planning, and even direct benefits to patients through
shorter and safer procedures. MMIF offers immense
potential yet has limitations like registration errors,
computational burdens, generation of artifacts, loss of
specific information, and a lack of standardized evaluation
metrics. Ultimately, ongoing interdisciplinary collaborations
will significantly enhance precision and accuracy,
improving patient outcomes in the years to come.
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