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Abstract:
Multi-modal Medical Image Fusion (MMIF) is an advancing field at the intersection of medical imaging, data science,
and clinical diagnostics. It aims to integrate complementary data from various imaging modalities, such as MRI, CT,
and PET, into a single, diagnostically superior composite image. The limitations of unimodal imaging, such as low
spatial resolution, insufficient contrast, or incomplete functional characterization, have catalyzed the development of
MMIF techniques to enable enhanced visualization, precise diagnosis, and personalized therapeutic planning. This
review provides a comprehensive synthesis of the MMIF landscape, categorizing methodologies into five principal
domains  such  as  spatial,  frequency-based,  sparse  representation,  deep  learning,  and  hybrid  approaches.  Each
technique is critically evaluated for its advantages, limitations, and applicability in clinical settings. Preprocessing,
registration, fusion execution, and validation are covered in this review, along with levels of fusion pixel, feature, and
decision. The study reviews prominent public databases, including TCIA, OASIS, ADNI, MIDAS, AANLIB, and DDSM,
comparing  their  imaging  modalities,  disease  coverage,  file  formats,  and  accessibility.  The  evaluation  of  MMIF
techniques  is  systematically  addressed,  providing  a  framework  for  objective  performance  assessment.  An
experimental setup is implemented on two datasets to assess the comparative efficacy of selected MMIF techniques
utilizing quantitative evaluation variables such as SSIM, entropy, spatial frequency, and mutual information. The
results highlight the effectiveness of  hybrid and deep learning-based approaches in maintaining both anatomical
detail  and functional  consistency across modalities.  The review explores MMIF’s  real-world clinical  applications,
including image-guided neurosurgery,  spinal  planning,  stereotactic  radiosurgery,  orthopedic implant  design,  and
oncology diagnostics. It also provides insights into future directions, such as explainable AI, federated learning, and
integration  with  robotic  surgeries.  MMIF  offers  immense  potential  yet  has  limitations  like  registration  errors,
computational burdens, generation of artifacts, loss of specific information, and a lack of standardized evaluation
metrics. Essentially, the study provides an analytical basis for healthcare experts, scientists, and engineers aiming to
develop clinically scalable MMIF systems, which will become indispensable tools for improving diagnostic accuracy,
treatment planning, and patient outcomes in modern healthcare.
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1. INTRODUCTION
Medical  imaging  is  an  essential  part  of  clinical

diagnostics because it  allows physicians to visualize and
evaluate anatomical and physiological structures without
surgical intervention. Single imaging approaches are often
insufficient to capture all the necessary details, especially
when both anatomical and functional aspects need to be
evaluated.  Magnetic  Resonance Imaging (MRI)  is  known
for  its  high  soft  tissue  resolution  but  lacks  biochemical
data  detection,  whereas  Positron  Emission  Tomography
(PET)  provides  functional  metabolic  information  at  the
expense of structural precision. Due to these constraints,
research  has  grown  significantly  in  this  field.  MMIF  is
defined as the combination of complementary information
from various imaging modalities for image enhancement,
accuracy,  and  interpretation.  For  quality  assurance,  the
fused  image  should  not  deviate  from  the  essential
characteristic of the input modalities involved and should
not  be distorted,  occluded,  or  stained with artefacts  [1].
For  example,  combining  PET  and  MR  data  allows  for  a
detailed depiction of both the anatomy of soft tissues and
functional tumor metabolism, which is crucial for oncology
and  neuroimaging.  The  use  of  CT  and  MRI  fusion,  as
shown in Fig. (1), allows clinicians to have a clear overall
overview  of  the  bone  structures  and  soft  tissue  during
treatment  planning  for  radiotherapy  and  guidance  for
complex  surgical  navigations.

The  development  in  the  field  of  medical  technology,
along with the increasing diversity of medical conditions,
substantiates the crucial role of multimodal image fusion.
The rise in chronic illnesses makes multimodal imaging a

treasured means of understanding the progression of the
disease. Despite its merits, there are many challenges for
MMIF.  The  fusion  method  must  accurately  preserve  the
spatial, spectral, and contrast characteristics of the source
images.  The  choice  of  techniques  for  co-registration
should  be  proper  because  images  from  different
modalities, such as PET and MRI, must register precisely,
considering the size, resolution, and noise differences [2].

The  fusion  approaches  are  categorized  into  three
levels: pixel, feature, and decision, which aim to generate
a fused image that enhances visual perception. Traditional
medical  image  fusion  techniques  are  categorized  into
spatial, transform, and hybrid. The radical change in the
automation  and  performance  of  methods  in  MMIF  has
been fueled by the use of convolutional neural networks,
autoencoders, and attention-based architectures [3]. Data-
driven  learning  enables  these  models  to  create  mature
fusion strategies that are more adaptive and generalizable
than  conventional  rule-based  models.  The  application  of
transformer-based  models  and  GANs  has  demonstrated
positive results for MMIF operations, particularly in PET-
MRI fusion and creation of high-resolution medical images
[4]. Applications for MMIF include the localization of brain
tumors,  identifying  breast  cancer,  as  well  as  assessing
bone  fractures  and  cardiovascular  health.  Fused  images
are  also  helpful  for  Computer-Aided  Diagnosis  (CAD)
systems,  which,  after  inputting  multimodal  data,  can
generate  models  that,  in  turn,  increase  diagnostic
accuracy. Besides, MMIF allows enhanced presentation of
key structures and lesions, which are useful in pre-surgical
planning, radiotherapy, and interventional procedures [5].

Fig. (1). Medical image fusion [2].
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This  review  aims  to  provide  comprehensive
information on the multimodal medical image fusion field,
encompassing  traditional  techniques,  recent  advances,
and future trends. The various sections of the review are
organized under the following headings.

1. A comparison of major medical imaging modalities.
2.  An  overview  of  publicly  available  multimodal

medical  image databases,  including TCIA,  OASIS,  ADNI,
MIDAS, and AANLIB.

3.  MMIF  steps:  preprocessing,  registration,  fusion
strategy,  and  performance  evaluation.

4. A taxonomy of fusion techniques.
5. Applications of Image Fusion in Clinical Medicine.

6. Image Quality Metrics in Medical Image Fusion.
7. Experimental Set Up and Discussion.
8. Challenges in MMIF deployment.
9. Emerging trends and future directions.
Through  this  review,  we  aim  to  lay  a  foundational

understanding that not only serves current practitioners but
also guides future research in designing clinically relevant
and  scalable  MMIF  solutions.  A  comparative  analysis  of
recent  review  papers  on  MMIF,  emphasizing  key  criteria
such  as  modality  presentation,  domain  categorization,
database accessibility, quantitative evaluation, and clinical
applications,  is  done  in  Table  1.  Fig.  (2a)  depicts  the
growth in publications in this field, and Fig. (2b) shows the
process followed for literature review from 2014 to 2024.

Table 1. Comparative overview of recent review studies on multimodal image fusion.

Review (Year of Publication)
Presentation of
Modalities for
Imaging

Presented
Domains of
MMIF

Publicly
Accessible
Databases

Quantitative
Evaluation
Results

Key Challenges
and Future
Directions

Clinical
Applications

Tirupal et al., 2021 [8] Yes Yes No Yes Yes No
Hermessi et al., 2021 [60] Yes Yes No Yes Yes No
Haribabu et al. 2022 [5] Yes Yes No Yes No No
Saleh et al. 2023 [6] Yes Yes No Yes No No
Diwakar et al. 2023 [53] Yes Yes No Yes Yes No
Kalamkar and Mary 2023 [2] Yes Yes No No Yes No
Khan et al.,2023 [19] Yes Yes Yes Yes Yes No
Our Work Yes Yes Yes Yes Yes Yes

Fig. (2a). Growth in MMIF publication trend chart (WOS).
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Fig. (2b). Flowchart illustrating the article selection process for
a  literature  review  on  pixel-based  image  fusion  in  medical
imaging,  covering  publications  from  2014  to  2024.

The  methodology  adopted  for  this  study  involved  a
structured  literature  search  and  screening  process  from
2014–2024. Google Scholar was selected as the principal
database  due  to  its  comprehensive  indexing  of  scholarly
articles across several disciplines, ensuring the inclusion
of the most relevant and recent advancements in the field.
Specific  keywords  such  as  “Pixel-based  image  fusion,”
“medical image fusion,” and “multi-modality” were used.
This  initial  search  yielded  a  total  of  170  articles.  These
were  then  categorized  into  review  articles  (10)  and
research articles (160) based on their scope and content.
The  selection  process  emphasized  relevance  to  the
research  objectives,  specifically  focusing  on  pixel-level
fusion methods and their applications in medical imaging.
Articles not related to the scope, duplicates, or those with
insufficient  methodological  details  were  excluded.  After

this  screening,  80  articles  were  finalized  and  critically
analyzed  for  the  literature  review  under  five  different
domains,  i.e.,  spatial,  transform,  deep  learning,  sparse,
and hybrid.

1.1. Imaging Modalities in Medical Image Fusion
Through  the  fusion  of  several  medical  imaging

techniques,  MMIF  manages  to  gather  a  variety  of
information concerning structural and functional features
of  human  bodies.  An  overview  of  structural,  functional,
and multimodal imaging modalities is given in Fig. (3).

X-rays  are  a  fundamental  imaging  modality  and  are
still  highly  used  for  imaging  bones,  for  identifying
fractures,  infections,  tumors,  etc.,  in  a  two-dimensional
image.  Computed  Tomography  (CT)  is  a  method  that
utilizes  ionizing  radiation  in  the  form  of  X-rays  for
producing cross-sectional three-dimensional images of the
body  in  great  detail.  It  is  superior  in  visualizing  bones,
revealing  internal  bleeding,  and  detecting  tumors.  CT
scans offer rapid and cost-effective imaging, making them
a  routine  choice  in  trauma  evaluations;  however,  they
involve exposure to ionizing radiation [6]. While CT excels
in imaging bones compared to MRI, it cannot differentiate
soft tissues as effectively.

Magnetic Resonance Imaging (MRI) is a non-invasive
technology that  uses magnetic  fields and radio waves to
create  high-quality  images  of  soft  tissues  in  the  brain,
muscles,  and  other  internal  organs  without  the  use  of
ionizing radiation. Owing to its superior image quality and
the absence of radiation exposure, MRI is the modality of
choice  for  evaluating  brain  tumors,  spinal  cord
abnormalities,  and  ligament  injuries  [7].

Positron  Emission  Tomography  (PET)  is  an  invasive
imaging  modality  utilizing  ionizing  radiation  to  assess
metabolic  and  functional  processes  within  the  body.  The
technique  involves  administering  a  radiotracer  that  emits
positrons  during  radioactive  decay.  PET  is  beneficial  for
oncology,  neurology,  and  cardiology  because  it  detects
biochemical  changes  before  anatomical  changes  are
observable.  The  PET’s  weak  spatial  resolution  is
complemented  by  its  combination  with  MRI  or  CT
techniques  to  enhance  anatomical  mapping.  SPECT  and
PET  use  radioactive  tracers  to  measure  blood  flow  and
metabolic processes.  However,  SPECT has less sensitivity
and  poorer  imaging  resolution  than  PET.  Despite  its
limitations,  SPECT  offers  important  data  for  diagnosing
cardiac perfusion problems, epilepsy, and bone disorders.
When  SPECT  is  combined  with  CT  or  MRI,  its  diagnostic
reliability  increases  significantly,  minimizing  the  effect  of
its poorer spatial resolution. fMRI uses the measurement of
changes in blood oxygenation and flow that correspond to
neural  activity  as  an  extension  of  a  standard  MRI.  It  is
especially  evident  in  brain  mapping  applications  in
neuroscience research and surgery planning. Researchers
at MMIF often combine fMRI with structural MRI to impart
brain function to particular anatomical structures [8]. Table
2 presents the categorization of imaging modalities, such as
ultrasound  and  endoscopy,  according  to  their  degree  of
invasiveness and the extent of patient exposure to ionizing
radiation.
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Fig. (3). Overview of structural, functional, and multimodal medical imaging modalities.

Table 2. Comparative analysis of medical imaging modalities.

Modality Type of Information Invasiveness
Ionizing
Radiation

Resolution Typical Use Cases

MRI Anatomical (soft tissue) Non-invasive No High spatial Brain, spinal cord, joints

CT Anatomical (bone/soft tissue) Non-invasive Yes High spatial Trauma, tumors, lungs

PET Functional (metabolic) Slightly Invasive (radiotracer) Yes Low spatial Cancer staging, brain disorders

SPECT Functional (blood flow) Slightly Invasive (radiotracer) Yes Low spatial Cardiology, brain perfusion

Ultrasound Anatomical (real-time soft tissue) Non-invasive No Moderate spatial Pregnancy, abdomen, heart valves

X-ray Anatomical (bone, dense tissue) Non-invasive Yes Moderate spatial Fractures, chest infections

fMRI Functional (neural activity) Non-invasive No Moderate spatial Brain mapping

Endoscopy Visual (surface/internal tissues) Invasive No Very high visual GI tract visualization, surgical guidance
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2. MULTIMODAL MEDICAL IMAGE DATABASES
The development and validation of Multimodal Medical

Image Fusion (MMIF) algorithms require robust, diverse,
and  accessible  imaging  datasets.  Publicly  available
datasets  offer  researchers  an  opportunity  to  test  their
fusion  methods  across  multiple  imaging  modalities  and
pathological  conditions  in  a  reproducible  manner.  A
variety of high-quality databases have emerged in recent
years,  as  shown  in  Fig.  (4),  supporting  fusion  research
across neuroimaging, oncology, cardiology, and more. This
section highlights some of the most widely used datasets,
TCIA,  OASIS,  ADNI,  MIDAS,  AANLIB,  and  DDSM,  and
outlines  their  characteristics,  disease  focus,  modality
support,  and  accessibility.

Fig.  (4).  Major  publicly  available  multimodal  medical  image
databases.

2.1. The Cancer Imaging Archive (TCIA)
TCIA  appears  to  be  one  of  the  top  sources  of

comprehensive and exhaustively curated cancer imaging
data  repositories.  Under  the  direction  of  the  National
Cancer Institute (NCI), the collection encompasses more
than  50,000  richly  varied  imaging  cases  CT,  MRI,  PET,
and  histopathology.  TCIA  is  a  benchmark  for  assessing
fusion  algorithms  because  of  its  ability  to  support
multimodal imaging research. For example, the Lung-PET-
CT-Dx dataset contains synchronized PET and CT scans for
the  diagnosis  of  lung  cancer,  and  BraTS  contains
multimodal MRI (T1, T1-Gd, T2, FLAIR) images annotated
for  brain  tumor  research.  The platform allows for  direct
visualization and annotation support through integration
with 3D Slicer, ITK-SNAP [9].

2.2. Open Access Series of Imaging Studies (OASIS)
OASIS  provides  an  extensive  collection  of

neuroimaging  data,  specifically,  destined  for  studies  in
aging, Alzheimer’s disease, and cognitive deficits. OASIS
consists of cross-sectional MRI and PET imaging datasets.
OASIS-3, the latest version, contains over 2,000 subjects
that had a series of imaging sessions, genetic testing, and
clinical  testing  [10].  The  variety  of  modalities  within
OASIS datasets makes them ideal for fusion studies. One
example  is  the  accuracy  of  diagnosis  of  Alzheimer's
disease  at  its  earliest  stages  by  using  the  amyloid  PET
along  with  the  T1-weighted  MRI.  Each  dataset  is
represented in the NIfTI format, a reputable neuroimaging
standard, and is accompanied by metadata that includes
the results of cognitive evaluations.

2.3.  Alzheimer’s  Disease  Neuroimaging  Initiative
(ADNI)

ADNI is  a collaborative investigation for the study of
the progress of Alzheimer’s disease through imaging and
clinical data. It provides rich longitudinal data drawn from
several  imaging  and  biomarker  modalities  such  as  MRI,
FDG-PET,  amyloid  PET,  and  CSF  biomarkers.  The
initiative  tracks  more  than  1,700  participants  through
various  stages  of  cognitive  decline.  ADNI  research
subjects are characterized at three cognitive levels such as
cognitively  normal,  MCI,  and  Alzheimer’s  disease.  The
large  temporal  resolution  of  ADNI  allows  the  study  of
temporal dynamics of brain change represented by other
imaging  technologies.  In  many  ADNI  data-based
investigations, researchers use fusion methods to predict
progression  from  MCI  to  Alzheimer’s  by  combining
structural  MRI  with  metabolic  PET  information  [11].
Researchers  can  obtain  data  from  the  ADNI  through  an
application process, in the form of DICOM and NIfTI, via
the Laboratory of Neuro Imaging (LONI) platform.

2.4. Medical Image Data Archive System (MIDAS)
MIDAS,  an  adaptable  data  management  system,  was

developed by Kitware,  which serves  the area of  imaging
datasets, including the realms of radiology, pathology, and
ultrasound. The system’s flexible architecture enables the
integration  and  storage  of  2D  and  3D  imaging  data
together  with  corresponding  clinical  and  demographic
records.  The  uniqueness  of  MIDAS  is  its  capability  to
integrate  custom  plugins  and  tools,  which  is  useful  for
researchers who work with end-to-end pipelines for image
fusion  and  segmentation.  Some  of  the  commonly  used
datasets in MMIF research include Head-Neck Cancer CT-
MRI  and  Cardiac  MR  +  Ultrasound  [12].  MIDAS  can
handle  DICOM,  RAW,  and  MetaImage  (.mha).

2.5.  Digital  Database  for  Screening  Mammography
(DDSM)

The DDSM repository exists with the objective of large-
scale  breast  detection,  predominantly  facilitated  by  X-ray
mammograms.  Although  the  repository  originally
concentrated on one modality, the recent additions, such as
INbreast  and  CBIS-DDSM,  have  included  histopathology
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and  ultrasound  data  for  supporting  multimodal  analysis.
The  DDSM  collection  contains  more  than  2,500  studies,
several of which are annotated with information about mass
boundaries.  The  DDSM’s  usefulness  for  MMIF  lies  in  its
synthesis  of  mammographic  features  with  pathological
confirmation,  supporting  the  integration  of  image  and
diagnostic  data  [13].

2.6.  Annotated  Alzheimer  Neuroimaging  Library
(AANLIB)

AANLIB was created as  a  dataset  specific  to  assisting
multimodal  fusion  and  classification  research  for
Alzheimer’s disease. It includes thousands of cases with T1-
MRI, FLAIR, PET, and neurocognitive records. Unlike large
datasets such as OASIS or ADNI, AANLIB provides images
that  are  prepared  for  fusion  (preprocessing  corrects  for
skull stripping and registration). These standardized images
significantly  streamline the work in  the MMIF workflows.
The AANLIB’s corresponding images are archived in NIfTI
format,  and  its  accompanying  ground  truth  labels  are
provided  for  employing  it  in  supervised  learning
procedures.  The open access for academic users makes it
suitable for evaluating deep learning fusion algorithms [14].
The  source  images  of  the  brain  from  AANLIB  in  axial,
sagittal,  and  coronal  sections  are  presented  in  Fig.  (5).

2.7. Dataset Summary and Usage Patterns
The  most  widely  used  fusion  modalities  across  these

datasets  include  MRI+PET,  MRI+CT,  and  PET+CT,

reflecting the clinical demand for combining anatomical and
functional  insights.  For  example,  ADNI  and  OASIS
predominantly use MRI+PET, while TCIA and MIDAS offer
CT+PET  or  MRI+CT  combinations.  Table  3  provides  an
overview of the available databases with respect to imaging
modalities, anatomical regions, and file formats. Regarding
disease  focus,  the  datasets  are  primarily  oriented  toward
the following pathological conditions:

Neurodegenerative diseases: OASIS, ADNI, AANLIB
Cancer imaging: TCIA, DDSM, MIDAS
Cardiac and head-neck imaging: MIDAS
Neurofunctional tasks: AANLIB, OASIS

3. MMIF PROCESS FLOW AND FUSION LEVELS
Multimodal Medical Image Fusion (MMIF) is a complex,

multistage  process  designed  to  integrate  complementary
information from multiple imaging modalities into a single,
more informative  representation.  This  process  is  typically
divided  into  four  primary  stages  such  as  preprocessing,
registration,  fusion,  and  validation.  Each  stage  involves
distinct  technical  considerations  and  affects  the  overall
quality  and  clinical  reliability  of  the  fused  output.
Furthermore,  fusion  can  be  performed  at  different
abstraction levels, pixel, feature, and decision, each offering
specific  benefits  and  trade-offs.  Understanding  this  full
workflow  is  critical  for  designing  and  evaluating  robust
MMIF  systems.

Fig. (5). AANLIB Source images of the brain in axial (a) and (b), sagittal (c), and coronal sections (d) [14].

Table 3. Database summary of modalities, organs, format, and types of access.

Database Modalities Target Organs / Systems File Formats Access Type

TCIA CT, MRI, PET, Histopathology Brain, Lung, Breast, Prostate DICOM, NIfTI Open (via API & GUI)

ADNI MRI, PET, CSF Brain (Neurodegeneration) DICOM, NIfTI Request-based (LONI access)

OASIS MRI, PET Brain (Aging, Dementia) NIfTI Open (with Data Use Agreement)

AANLIB MRI, PET, FLAIR Brain (Alzheimer’s) NIfTI Open (Academic Use)

MIDAS CT, MRI, Ultrasound Head & Neck, Heart, Abdomen DICOM, MHA, RAW Open (Kitware tools)

DDSM Mammography, Histopathology Breast LJPEG, DICOM Open (Preprocessing scripts available)
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Fig. (6). Steps in the process of image fusion [15].

3.1. Preprocessing
Preprocessing serves as the foundation of MMIF and

involves preparing images for further stages by enhancing
quality  and  ensuring  uniformity  across  modalities.  This
stage  includes  noise  reduction,  intensity  normalization,
contrast enhancement, resolution adjustment, and format
conversion.  Since  different  imaging  modalities  have
different spatial resolutions, acquisition angles, and noise
characteristics, preprocessing plays a vital role in aligning
these  disparities.  For  instance,  Magnetic  Resonance
Imaging  (MRI)  often  exhibits  inhomogeneous  intensity,
while  Computed  Tomography  (CT)  is  prone  to  beam-
hardening artifacts.  Normalizing  these  differences  using
histogram equalization or z-score normalization improves
the effectiveness of subsequent fusion steps. Additionally,
many  public  datasets  like  AANLIB provide  preprocessed
images,  including  skull  stripping  and  spatial
standardization,  reducing  the  preprocessing  burden  on
researchers [15]. Advanced preprocessing techniques such
as  total  variation  filtering,  anisotropic  diffusion,  and
rolling guidance filters have been adopted in recent MMIF
research to  preserve structural  details  while  eliminating
noise. These techniques are especially beneficial in fusion
scenarios  involving  low-quality  or  low-contrast  images.
The  process  of  image  fusion  is  shown  in  Fig.  (6).

3.2. Image Registration
Registration is the process of spatially aligning two or

more  images  of  the  same  anatomical  region,  but  from
different  modalities.  It  compensates  for  differences  in
image  scale,  orientation,  and  position,  ensuring  that
corresponding  anatomical  structures  overlap  accurately.
The accuracy of registration directly affects the fidelity of
the final fused image, especially in pixel- and feature-level
fusion.

Image registration  methods  are  typically  categorized
into rigid,  affine,  and non-rigid (deformable)  techniques.
Rigid  registration  handles  only  translation  and  rotation,
while  affine  registration  includes  scaling  and  shearing.
Non-rigid  registration  addresses  complex  deformations
and  is  often  necessary  when  fusing  modalities  like  PET

and  MRI  due  to  organ  motion  or  different  acquisition
geometries.  Techniques  such  as  mutual  information
maximization, normalized cross-correlation, and landmark-
based  mapping  are  commonly  employed.  Deep  learning-
based registration models, especially U-Net architectures
trained  on  spatial  transformer  networks,  are  gaining
popularity  due  to  their  speed  and  robustness.  These
methods can perform unsupervised, real-time registration
even in challenging clinical settings.

3.3. Image Fusion Techniques
The  core  of  MMIF is  the  fusion  process  itself,  which

combines information from registered images into a single
image. Fusion techniques are classified based on the level
at which integration occurs, as described in Fig. (7).

3.3.1. Pixel-level Fusion
Pixel-level fusion is the most straightforward approach,

where  corresponding  pixels  from  the  source  images  are
directly combined using arithmetic or logical operations.
Common methods include weighted averaging, maximum
selection, and wavelet-based combination. These methods
are  computationally  efficient  but  highly  sensitive  to
registration errors and noise. Recent enhancements at this
level  involve  multiscale  transforms  such  as  NSCT  (Non-
subsampled  Contourlet  Transform),  DWT,  and  shearlet
transforms,  which improve spatial-frequency localization
and reduce artifacts [16]

3.3.2. Feature-level Fusion
Feature-level  fusion  focuses  on  processing  and

integrating  visual  features  that  are  more  relevant  than
individual  pixels.  This  strategy  involves  independently
extracting  high-level  characteristics  such  as  edges,
textures,  and  shapes  from  the  source  images  and  then
using  a  fusion  method  on  them.  This  level  offers  better
robustness  against  misregistration  and  provides  more
semantically  meaningful  outputs,  leading  to  enhanced
visual perception, decision-making precision. Techniques
like  SIFT  (Scale-Invariant  Feature  Transform),  Gabor
filters, and gradient domain methods are widely used for
this purpose.
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Fig. (7). Levels of multimodal medical image fusion.

Table 4. Fusion level vs. application scope.

Fusion Level Description Techniques Advantages Limitations Typical Applications

Pixel-Level

Combines corresponding pixels
from source images using
arithmetic or transform-based
methods

Averaging, Maximum
Selection, DWT, NSCT,
Shearlet

Preserves fine structural
details; computationally
simple

Highly sensitive to noise
and registration errors

MRI-CT fusion in brain
imaging; PET-CT for tumor
mapping

Feature-Level

Extracts and fuses intermediate
features such as edges, texture,
and gradients before
reconstruction

SIFT, CNN features,
sparse representation,
PCA

Robust to alignment errors;
preserves semantic content

High computational
complexity; depends on
effective feature
extraction

Alzheimer’s analysis using
MRI-PET; tumor
segmentation from hybrid
MRI

Decision-Level

Fusion occurs after independent
modality analysis at the
classification or prediction
stage.

Majority voting,
Bayesian inference,
ensemble fusion

Allows modality-specific
models; lower dependence
on pixel accuracy

Does not generate a
fused image;
interpretability is
reduced

CAD systems for tumor
detection, AI-based
diagnosis integration

Feature-level  fusion  can  be  categorized  according  to
the  nature  of  the  methodologies  used  and  the  combined
features. These techniques can be broadly categorized into
sparse  representation  methods  and  clustering-based
methods.  Sparse  techniques  express  images  as  sparse
vectors  in  a  dictionary.  These  methods  typically  divide
source  images  into  patches,  organize  them into  vectors,
and  then  perform  the  fusion  process.  Clustering
algorithms,  including  Quantum  Particle  Swarm  Optimi-
zation  and  Fuzzy  C-means,  can  split  feature  spaces  and
provide weighting factors for fusion.

3.3.3. Decision-level Fusion
At  the  decision  level,  fusion  occurs  after  separate

processing  and  classification  of  input  images.  This  is

commonly  used  in  Computer-Aided  Diagnosis  (CAD)
systems  and  is  especially  relevant  in  AI-based  clinical
workflows.  Methods  for  decision-level  fusion  include
majority  voting,  Bayesian  inference,  Dempster-Shafer
theory,  and  ensemble  learning  techniques,  which  weigh
individual  decisions  to  derive  a  robust  outcome.  While
decision-level fusion is less sensitive to registration errors
and  allows  for  modality-specific  preprocessing  and
modeling, it lacks spatial resolution in the final output. It
is generally unsuitable when a fused image is required for
direct  interpretation  [17].  A  brief  comparison  of  these
three, along with the scope of application, is summarized
in Table 4.
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3.4. Validation and Evaluation
Validation  assesses  the  quality  and  clinical  utility  of

the  fused  image  using  objective  metrics  and,  where
possible,  expert  evaluation.  The  most  commonly  used
metrics  include:

Structural  Similarity Index (SSIM): Measures perceived
image quality and structural preservation.
Peak  Signal-to-Noise  Ratio  (PSNR):  Evaluates  image
fidelity based on pixel intensity.
Mutual Information (MI): Quantifies the amount of shared
information between fused and source images.
Entropy (EN): Reflects information richness in the fused
image.
Edge  Preservation  Index  (EPI)  and  Spatial  Frequency
(SF): Measure edge clarity and texture detail [18].

Visual  comparison  remains  essential  in  clinical
validation.  Radiologists  or  clinical  experts  often  review
Fusion  outputs  to  assess  diagnostic  relevance  and  inter-
pretability.  Increasingly,  evaluation  also  includes  testing
downstream tasks such as segmentation, classification, and
localization to assess the practical benefits of fusion. MMIF
is a multi-stage process where each phase requires tailored
algorithms  and  quality  checks  to  ensure  robust
performance, from preprocessing to validation. Fusion can
be applied at different levels depending on the application,
with  each  level  offering  unique  advantages.  Recent
advances,  especially  in  deep  learning  and  transformer
models,  have  improved  registration  accuracy  and  fusion
robustness, allowing real-time, scalable implementations in
clinical  environments.  The  modular  nature  of  the  MMIF
makes it adaptable, allowing hybrid strategies that combine
pixel, feature, and decision-level fusion to maximize clinical

efficacy [19]. The various steps in the entire workflow are
depicted in Fig. (8).

Fig. (8). MMIF workflow [19].

4. FUSION DOMAINS AND TECHNIQUES
These  MMIF  methods  are  used  in  diverse

computational  realms,  which  impart  unique  advantages.
The  choice  of  domain  affects  the  efficiency,  quality,  and
real-world  applicability  of  fusion  results.  The  prominent
domains and their respective techniques are described in
Fig. (9).

Fig. (9). Various domains of multimodal medical image fusion along with techniques.
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Fig. (10). Fusion of SPECT and MRI images using IHS in the spatial domain [19].

This  section  presents  a  structured  review  of  the
dominant  fusion  domains  under  five  headings:

Spatial Domain
Frequency /Transform Domain
Sparse representation
Deep learning, and
Hybrid Domain.

4.1. Spatial Domain
Image fusion in the spatial domain is distinguished by

simple  computation  and  sound  handling,  which  can  be
easily used and processed. In this process, image fusion is
performed  using  methods  that  manipulate  pixel  values
without  first  transforming  them  into  frequency  domain
formats.  Conventional  spatial  fusion  methods  include
Principal  Component  Analysis  (PCA),  Intensity-Hue-
Saturation  (IHS)  mapping,  Brovey  transformation,  and
high-pass filtering.  Such methods have the advantage of
simplicity,  faster  execution  times,  and  more  vivid  color
expression, making them suitable for real-time cases and
applications  where  computational  power  is  limited.  For
instance, SPECT-MRI fusion has opportune over the IHS-
based methods, which enhance the blending of anatomical
and  functional  views  without  involving  complex
computational  routines,  as  shown  in  Fig.  (10).

Spatial domain methods tend to cause edge softening,
spectral distortion, and weak noise tolerance. Since these
techniques lack frequency composition, they cannot capture
subtle  textural  and  high-frequency  details,  and  thus  their
role  in  complex  applications  such  as  brain  tumor
localization  or  microvascular  imaging  cannot  be  fully
realized.  Initial  Studies  by  Baraiya  and  Gagnani  [20]  and
Parekh  et  al.  [21]  highlighted  traditional  techniques  like
Principal Component Analysis (PCA) and Brovey Transform,
which  are  utilized  in  fields  such  as  remote  sensing  and
preliminary diagnostic systems. These methods highlighted
fundamental spatial integration while exposing significant

problems,  including  spatial  distortions  and  inadequate
spectral  preservation.  Morris  and  Rajesh  [22]  recognized
the constraints of static fusion rules, advocating for image-
adaptive approaches. Bhuvaneswari and Dhanasekaran [23]
identified  that  conventional  spatial  domain  techniques
diminish  image  contrast,  prompting  the  advancement  of
transform-domain  solutions.

Li  et  al.  [24]  and  Du  et  al.  [25]  made  significant
advancements by incorporating multi-scale transforms and
edge-preserving  filtering,  thereby  enhancing  both
structural integrity and contrast preservation. Their efforts
established  the  foundation  for  hybrid  spatial-transform
techniques. Zhan et al. [26] tackled brain image fusion by
implementing  guided  filtering  and  spatial  gradient-based
enhancements, which demonstrated enhanced performance
in high-detail areas like cerebral tissue and lesions. Kotian
et  al.  [27]  conducted  a  comparative  analysis,  suggesting
that  a  spatial/wavelet  hybrid  approach,  which  combined
both  spatial  and  spectral  attributes,  is  a  recommended
method  for  general  Multi-Image  (MI)  fusion.  From
2018–2023,  the  field  underwent  substantial  maturation
when researchers such as Liu [28], Na [29], Saboori [30],
and Pei [31] employed wavelet transforms, multi-resolution
decomposition,  and  guided  filtering  to  preserve  feature
layers  and  minimize  distortion.  They  attained  significant
success in applications including PET-MRI, CT-MRI fusion,
and  brain  pathology  analysis.  Tan  [32],  Chen  [33],  and
Deepali  [34]  focused  on  enhancing  low-complexity
algorithms for  rapid implementation in  real-time systems,
whereas  Kong  [35],  Li  [36],  Feng  [37],  and  Zhang  [38]
introduced  sophisticated  spatial  techniques  such  as
Framelet Transform, quasi-bilateral filtering, and structural
dissimilarity  metrics.  These  recent  methodologies  show
enhanced  performance  in  terms  of  structural  retention,
contrast preservation, and computational efficiency relative
to  State-of-the-Art  (SOTA)  fusion  techniques.  The
progression of spatial domain techniques indicated a trend
towards hybridization,  multi-scale  modeling,  and adaptive
spatial  decision-making,  thereby  enhancing  robustness  in
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clinical  applications  such  as  lesion  localization,  radio-
therapy  planning,  and  neuroimaging  diagnostics.  Table  5
depicts  the  fusion  strategy  and  area  of  application  in  the
spatial domain.

4.2. Transform Domain
The transform or  frequency domain has emerged as  a

powerful  approach  to  mitigate  several  challenges
associated with  secure  image fusion.  Leading up to  these
transformations  is  the  conversion  of  images  using
conversion  algorithms  such  as  the  Fourier  Transform,
Discrete  Wavelet  Transform  (DWT),  Non-Subsampled

Contourlet  Transform  (NSCT),  or  Laplacian  Pyramid
method.  These  changes  separate  images  into  separate
spatial-frequency  components,  thus  allowing  for  a  more
accurate  separation  of  structural  vs.  textural  aspects.
Thereafter,  when  fusion  is  carried  out  in  the  transform
domain, the reconstructed final image features an inverse
transformation. Since frequency-based approaches excel at
maintaining edge sharpness and texture information, they
are  suitable  for  clinical  endeavors  involving  precise
structure separation, such as identifying tumor edges. The
basic  process  of  decomposition  and  application  of  the
inverse  transform  is  shown  in  Fig.  (11).

Table 5. Summary of spatial domain methods in medical image fusion.

Author (Year) Technique Method Fusion Strategy Area of Application

Baraiya & Gagnani
(2014) [20] PCA, direct pixel integration Classical Spatial Basic fusion using PCA for improved

interpretability
Computer vision, medical
imaging

Parekh et al. (2014) [21] Brovey Transform, Color
Model Spatial Color normalization and red channel

enhancement; prone to spatial distortion Remote sensing, radiology

Morris & Rajesh (2015)
[22]

Pixel arithmetic (avg, add,
subtract) Spatial Emphasized input-based method selection;

basic fusion is not always optimal Diagnostic imaging

Bhuvaneswari &
Dhanasekaran (2016)
[23]

Spatial vs. Transform Comparative Study Highlighted contrast loss in spatial fusion;
promoted hybrid alternatives MRI-CT, PET fusion

Li et al. (2017) [24] Multi-scale + edge
preserving filter

Spatial-Transform
Hybrid

Proposed framework to preserve detail in
structural fusion Clinical diagnostics

Du et al. (2017) [25] Local Laplacian filtering +
multi-scale framework Spatial Used predefined features for distortion-free

PET-SPECT fusion Brain imaging

Zhan et al. (2017) [26] Fast gradient filtering +
morphological closure Gradient-Based Spatial Introduced fast structure-preserving filters;

reduced execution time Multi-organ fusion

Kotian et al. (2017) [27] Comparative analysis Spatial / Wavelet Hybrid Recommended combination of spatial and
spectral attributes General MI fusion

Liu X et al. (2018) [28]
Multi-scale joint
decomposition + shearing
filters

Transform Hybrid Directional coefficients for high-detail
retention Brain functional imaging

Na Y et al. (2018) [29] Filter-guided wavelet fusion Wavelet/Spatial Accurate localization of anatomical targets CT-MRI fusion
Saboori et al. (2019)
[30]

Adaptive filtering + spectral-
spatial optimization Spatial Structural and spectral enhancement through

filter parameter tuning Biomedical instrumentation

Pei C et al. (2020) [31] Guided filtering + multiscale
layers

Spatial + Texture
Layering

Preserved structural layers and enhanced
image contrast Multi-organ medical imaging

Tan W et al. (2021) [32] Three-layer image fusion Spatial Layering Validated on >100 image pairs from multiple
pathologies Collaborative diagnosis

Chen et al. (2021) [33] Rolling Guidance Filtering Spatial Separated and fused structural-detail layers;
maintained anatomical clarity Head and brain imaging

Deepali (2022) [34] PCA, ICA, Averaging Classical Spatial Advocated low-complexity spatial fusion for
fast implementation

Low-resource medical
devices

Kong W et al. (2022)
[35]

Framelet Transform +
Subband fusion Framelet / Spatial Improved structure clarity via GDGFRW and

SWF modules Radiology, Lesion detection

Li J et al. (2023) [36] Modified Laplacian + Local
Energy Spatial Energy-based Enhanced feature energy preservation;

outperformed 9 SOTA methods Harvard dataset

Feng et al. (2023) [37] SSD for detail and texture
retention Structural Similarity Solved low contrast and pseudo-edges using

structure-preserving fusion
Clinical diagnosis (multi-
pathologies)

Zhang et al. (2023) [38] Quasi-cross bilateral filtering
(QBF) Spatial Filtering Focused on edge contour, lesion detail, and

contrast; high benchmark performance. PET/MRI fusion, Neurology
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Fig. (11). Basic methodology of CT and MRI fusion in the transform domain described along with CT and MRI images from AANLIB [19].

Preliminary research, including that of Singh et al. [39],
tackled the shortcomings of real-valued wavelet transforms,
specifically shift sensitivity and inadequate directionality by
utilizing  the  Dual-Tree  Complex  Wavelet  Transform
(DCxWT). This method markedly enhanced fusion results by
maintaining  phase  and  directional  specifics.  In  the  same
year,  Ganasala  et  al.  [40]  introduced  an  image  fusion
technique for CT and MR images with the Nonsubsampled
Contourlet  Transform  (NSCT),  resulting  in  improved
visualization of soft tissue and osseous structures. Bhateja
et al. [41] advanced this research by developing a two-stage
architecture  that  included  Stationary  Wavelet  Transform
(SWT)  and  NSCT,  utilizing  PCA  for  redundancy  mini-
mization  and  contrast  enhancement.

To  more  effectively  capture  edge  information,
Srivastava et al. [42] utilized the Curvelet Transform, which
showed  enhanced  efficacy  in  maintaining  anisotropic
features and improving visual perception via a local energy-
based  fusion  rule.  Xu  et  al.  [43]  presented  the  Discrete
Fractional  Wavelet  Transform (DFRWT),  which,  due to its
fractional  order  parameters,  facilitated  adaptive
decomposition  and  enhanced  multimodal  image  fusion
efficacy.  Gomathi  et  al.  [44]  demonstrated that  the  NSCT
method provides improved frequency decomposition while
efficiently preserving high-frequency image components. In
contrast,  Liu  et  al.  [45]  showed  that  the  NSST  is  highly
effective  in  maintaining  texture  and  detail.  Numerous
scholars  investigated  shearlet-based  and  nonsubsampled
techniques for improved frequency decomposition. Gambhir
et al. [46] also demonstrated that the fused images obtained
from the proposed method offer better clarity and enhanced
information, making them more useful for quick diagnosis
and improved treatment of diseases.

Li et al. [47] improved fusion efficacy by utilizing NSST
with a novel fusion rule that reduced blocking and blurring
artifacts through local  coefficient  energy and mean-based
methodologies,  while  Ganasala  and  Prasad  [48]
implemented SWT with Transformation Error Minimization
(TEM)  to  improve  image  fusion  quality  while  decreasing
computational load. Goyal et al. [49], Khare et al. [50], and
Kong et al. [51] enhanced image fusion by preservation of
edges,  textures,  and  structural  boundaries,  minimizing
artifacts with RGF/DTF, median-based NSST, and Framelet
Transform, respectively. The results of the work by Diwakar
et  al.  [52]  demonstrated  that  non-conventional  transform
domains  yield  improved  outcomes  when  integrated  with
various  spatial  domain  architectures.  An  overview  of
various  transform  techniques  is  presented  in  Fig.  (12).
Although  distinguished  by  their  quality  enhancements,
frequency  domain  approaches  are  accompanied  by
increased  computational  costs  and  high  requirements  for
exact image registration, which may be quite challenging to
implement in practice. The key contributions are presented
in Table 6.

4.3. Sparse Representation
The  sparse  representation-based  fusion  method

provides  a  more  compacted,  higher  information-to-data
ratio. Sparse methods examine images by projecting them
onto a dictionary of basis functions, which can be trained or
predetermined.  The focus is  on a  small  set  of  coefficients
that  correspond  to  significant  aspects  of  the  image.  By
combining coefficients from different modalities, as shown
in  Fig.  (13),  the  method  constructs  a  fused  image  with
enhanced  predominant  structure  and  contrast.
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Table 6. Key contributions from the transform domain.

Study Methodology Key Contributions

Singh et al. [39] Dual-Tree Complex Wavelet Transform
(DCxWT)

Addressed the constraints of wavelet transforms, such as shift sensitivity, poor
directionality, for better fusion.

Ganasala et al. [40] Nonsubsampled Contourlet Transform
(NSCT)

Improved visualization of soft tissue and bone structure, enhancing the quality of
image fusion.

Bhateja et al. [41] SWT + NSCT with PCA Developed a dual-stage architecture for contrast enhancement and redundancy
minimization.

Srivastava et al. [42] Curvelet Transform Effectively captured anisotropic features and improved visual perception with a local
energy-based fusion rule.

Xu et al. [43] Discrete Fractional Wavelet Transform
(DFRWT)

Delivered adaptive decomposition for enhancing fusion performance across
modalities.

Gomathi et al. [44] NSCT Improved frequency decomposition efficiently maintains high-frequency image
components.

Liu et al. [45] Nonsubsampled Shearlet Transform (NSST) Successfully maintain texture and detail effectively.

Li L et al. [47] NSST with novel fusion rule Addressed blocking and blurring artifacts using local coefficient energy and a mean-
based fusion technique.

Ganasala & Prasad [48] SWT with Transformation Error Minimization
(TEM)

Optimized performance with less computational load and improved image fusion
quality.

Goyal et al. [49] Rolling Guidance Filtering (RGF) and Domain
Transfer Filtering (DTF) Maintained edge and texture details while fusing low-resolution images.

Khare et al. [50] Median-based fusion rule within NSST Preserved structural boundaries through median-based fusion.

Kong et al. [51] Framelet Transform (FT) Resolved fusion artifacts and texture degradation by decomposing images into
structured layers.

Fig. (12). Overview of different techniques of the transform domain.
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Fig. (13). Steps of image fusion using sparse representation methods [53].

It has gained significant interest because of its ability
to maintain prominent image elements such as edges and
textures while minimizing redundancy. A typical SR-based
image fusion process comprises the following steps:

1. Extraction of patches from source images (such as
CT and MRI).

2. Encoding of each patch with a trained dictionary.
3. Integration of sparse coefficients by a criterion (e.g.,

max-selection or averaging).
4. Reconstruction of amalgamated patches to achieve

the final image [53].
Zhang et al. [54] described how the SR model forms a

dictionary  through  a  sparse  linear  combination  of
prototype  signal  models.  According  to  Joint  Sparse
Representation (JSR), several signals from several sensors
of  the  same  scene  constitute  an  ensemble.  While  each
signal possesses an innovative sparse component, they all
share a common sparse component.  As compared to SR,
the  JSR  presents  reduced  complexity.  Zong  et  al.  [55]
proposed  a  sparse  method  using  categorized  image
patches  based  on  their  geometric  orientation.  Liu  et  al.
[56] made a significant early contribution by introducing

Convolutional Sparse Representation (CSR), an alternate
representation of SR using the convolutional form, aiming
to achieve SR of a complete image rather than a localized
image patch.

Liu et al. [57] presented Convolutional Sparsity-based
Morphological Component Analysis (CS-MCA). In contrast
to  the  conventional  SR  model,  which  relies  on  a  single
image component  and overlapping patches,  the  CS-MCA
model  can  concurrently  accomplish  multicomponent  and
SRs of the source images by amalgamating MCA and CSR
within  a  cohesive  optimization  framework.  Shabanzade
and Ghassemian [58]  employed sparse  representation  in
the NSCT (Nonsubsampled Contourlet Transform) domain
in  a  hybrid  context.  Their  approach  integrated  low-
frequency  coefficients  through  sparse  coding  and  high-
frequency  components  using  max-selection,  resulting  in
both  multiscale  decomposition  and  sparse  adaptability.
Alternative hybrid methodologies have integrated SR with
PCNN (Pulse Coupled Neural Networks), and clustering-
based  multi-dictionary  learning,  which  allocates  region-
specific  dictionaries  (e.g.,  for  edges  versus  smooth
regions) to enhance localization and context-aware fusion.
The  various  categories  of  sparse  methods  are  also
described  in  Table  7.

Table 7. Categories of sparse representation methods.

Category Model

Local and single-component SR-based

Orthogonal Matching Pursuit (OMP),
Simultaneous OMP (SOMP),
Group Sparse Representation (GSR),
Sub-dictionary-based adaptive SR combined with other transforms

Multi-component SR-based
Joint Sparse Representation (JSR),
Morphological Component Analysis (MCA)

Global SR-based Convolutional Sparse Representation (CSR)

Simultaneous multi-component and Global SR-based MCA-extended version of CSR
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Table 8. Challenges of sparse representation methods in image fusion.

Aspect Challenges

Feature Preservation [53] Poor dictionary training can result in suboptimal fusion outcomes.

Adaptability [53] The process of dictionary learning is computationally intensive and requires substantial training data, posing challenges
in resource-constrained environments.

Robustness to Misregistration [60] Significant misregistration can still degrade fusion performance, necessitating precise alignment in practice.
Computational Complexity [61] SR methods are computationally demanding, which limits their applicability in scenarios requiring rapid processing.

Noise Sensitivity [62] SR methods may inadvertently amplify noise, compromising image quality if the noise characteristics are not well
understood.

SR  continues  to  serve  as  a  robust  intermediary
solution  between  conventional  and  deep  learning-based
fusion  approaches.  Its  unsupervised  characteristics  and
adaptability render it especially advantageous in contexts
with limited labeled data. As highlighted in the paper by
Hermessi et al. [59], SR remains fundamental to numerous
advanced  approaches,  particularly  in  hybrid  fusion
architectures  where  it  enhances  contrast,  clarity,  and
feature  retention  [60].  When  sparse  representation  is
utilized alongside multi-scale techniques,  such as NSCT,
Laplacian  Pyramid,  Dual  Tree  Complex  Wavelet,  or
Curvelet,  it  effectively  improves  fine  details,  boosts
contrast,  and minimizes  noise.  According to  a  review by
Zhang et al. [61], sparse representation proved superior to
traditional  multi-scale  approaches  in  terms  of  retaining
image  structures  and  defining  edges.  It  learns  an
overcomplete  dictionary  from  a  set  of  training  images,
resulting  in  more  stable  and significant  results.  A  smart
blending  approach  that  combines  SR  with  SCNN  to
overcome  flaws  such  as  edge  blurriness,  diminished
visibility, and blocking artifacts was proposed by Yousif et
al. [62]. The results have demonstrated that the proposed
method is superior to previous techniques, particularly in
suppressing the artifacts produced by traditional SR and
SCNN  methods.  Table  8  summaries  the  advantages  and
challenges of this domain. SR-based approaches encounter
constraints, including:

The  high  computational  cost  results  from  sparse
optimization procedures.
Block  artifacts  arising  from  independent  patch-based
judgements.
Sensitivity  to  misregistration,  as  the  majority  of
approaches presume aligned inputs.

4.4. Deep Learning Fusion Methods
The last few years have seen a paradigm shift in MMIF

research,  with  deep  learning  shaping  into  an  enabler  of
automated multimodal fusion through end-to-end learning
architectures.  Although  Deep  Neural  Networks  (DNNs)
have  yielded  exceptional  results  in  learning  multi-level
feature representations from raw image data, the architects
of  the  networks  are  finding  it  difficult  to  give  them
meaningful  names.  Notable  compositions  of  DNNs  have
been CNNs, U-Nets, and Generative Adversarial Networks
(GANs). The training objective of these models incorporates
optimal  structural  alignment,  maintaining  semantic

information,  and  enhancing  disease  identification.
The initial implementation of CNNs in medical image

fusion was presented by Liu et al. [56], exhibiting superior
performance as compared to spatial and transform domain
approaches. CNNs' design effectively extracts spatial and
textural  information,  yet  they  necessitate  extensive
annotated datasets and intricate tuning processes. Yu Liu
et al.  [63]  emphasized the dual  roles of  fusion rules and
activity  level  estimation,  using  local  filters  and  clarity
maps  to  guide  the  amalgamation  of  high-frequency
features. Gibson et al. [64] insisted upon the importance of
deep  networks  for  neurological  diagnosis  through  pixel-
level fusion.

Xia et al. [65] accomplished a significant advancement
by  integrating  multiscale  decomposition  with  CNNs,
facilitating  high/low-frequency  discrimination  and
enhanced  multi-resolution  fusion.  Wang  et  al.  [66]
employed Siamese CNNs to create activity-guided weight
maps, resulting in structurally intricate fused images. To
overcome  batch  processing  restrictions,  Li  et  al.  [67]
created CNN-based frameworks that facilitated real-time,
multimodal  fusion,  therefore  improving  efficiency  and
detail  retention.  These  approaches  provided  practical
utility  in  clinical  environments  requiring  simultaneous
processing  of  many  images.  The  fusion  approach  using
CNN and autoencoders is depicted in Fig. (14).

Chuang et al. [68] introduced a fusion framework that
integrated  U-Net  and  Autoencoder  architectures  (FW-
Net), where the encoder-decoder configurations exhibited
U-Net’s  skip  connections.  The  design,  initially  limited  to
CT-MRI, has the potential for future PET-MRI and SPECT
fusion. Kumar et al. [69] examined the utilization of CNNs
for thermal-visual fusion in remote sensing, showing cross-
domain relevance.  Shafai  et  al.  [70]  introduced a  hybrid
fusion technique in which CNNs integrated three images
using traditional methods, leading to less redundancy and
enhanced semantics.

To address the issues of semantic degradation in fused
outputs, Ghosh [71] introduced a dual U-Net FW-Network
that  prioritized  semantic-level  fusion.  This  approach
markedly  enhanced  clinical  utility  in  disease  localization
and  segmentation.  Deep  learning-based  image  fusion  is  a
powerful  paradigm  that  provides  excellent  visual  fidelity,
task  adaptability,  and  end-to-end  automation.  However,
accessible data sets, interpretable models, and the creation
of computationally efficient architectures that work across
modalities are necessary for the advancement.
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Fig. (14). Different approaches of deep learning (a) CNN-based fusion (b) Autoencoder-based fusion [2].

A CNN-based multimodal fusion approach designed for
oncology  not  only  succeeded  in  improving  diagnostic
accuracy but also outperformed current methods in both
subjective and objective metrics. Due to their generative
properties, GANs can create high-resolution fused images
that  preserve  both  anatomical  structure  and  functional
intensity. The dependence of such models on large sets of
labeled  data  and  their  tendency  to  overfit  limited  data
variability are serious issues. The lack of interpretability is
also  a  concern for  these  models  in  clinical  settings.  Fig.
(15)  demonstrates  the  domain-wise  publication  trends
across Web of Science,  in multimodal image fusion from
2000 to 2024. It indicates the rapid proliferation of deep
learning and hybrid domains in this period. Driven by the
endorsement of CNNs, U-Nets, and GANs, the adoption of
deep  learning  methodologies  has  shown  remarkable
expansion. The explosion in growth indicates a shift in the
sphere  towards  using  data-driven  fusion  techniques,
characterized  by  a  strong  understanding  and  fusion  of
intricate  anatomical  and  functional  relationships.

At the same time, the development of hybrid approaches
using  such  spatial,  frequency,  and  deep  learning
approaches is relatively stable, demonstrating their ability
to handle the dissimilar nature of medical data. Due to their
modular  structure,  these  techniques  provide  superior
flexibility  and  precision,  which  improves  overall  fusion
performance. Collectively formed by these advances, these
fields  have  outperformed  traditional  approaches  and
indicate  a  shift  towards  smarter,  more  holistic  fusion
methods for medical applications. MMIF's future research
appears  to  be  majorly  focused  on  DL-based  and  hybrid
techniques, especially where complex cases of oncology and

neuroimaging are involved. The key contributions from DL
are presented in Table 9.

4.5. Hybrid Domain
To benefit from diverse domains and tend towards their

minimal  negative  effects,  hybrid  fusion  approaches  have
attracted much attention. Such approaches utilize specific
domain expertise, such as NSCT for frequency analysis and
CNNs for feature extraction, or the use of neural networks.
Simultaneously  managing  the  spatial,  frequency,  and
contextual  information,  hybrid  systems  are  capable  of
creating  informative  fused  images.

Chen  Y  [72]  established  a  foundational  framework  by
combining  Nonsubsampled  Contourlet  Transform  (NSCT)
and Dual-Tree Complex Wavelet Transform (DTCWT), which
was  supplemented  by  Pulse-Coupled  Neural  Networks
(PCNN)  for  the  creation  of  composite  images.  This
represented  a  crucial  advancement  in  integrating  hand-
crafted and adaptive transformations to  tackle  challenges
such as image noise and resolution discrepancies. Wang et
al. [73] improved diagnostic precision by employing NSST
and  adaptive  decomposition  frameworks  that  consider
high/low  frequency  layers  and  dynamic  textural  features,
respectively. These works acknowledged that conventional
static  decomposition  inadequately  reflects  contextual
differences across modalities. Bhateja et al. [74] advanced
the  hybrid  approach  by  introducing  shearlet  and  NSCT-
based fusion for PET/SPECT, MRI, and CT images, including
contrast  enhancement  and  weighted  PCA  to  preserve
multispectral  integrity.  Du et al.  [75] and Zhao et al.  [76]
tackled  modality-specific  inconsistencies  by  developing
distinct methodologies for MRI and PET, thereby enhancing
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fusion accuracy through edge-based weighting.

Fig. (15). Publication trends across all domains over the last five years (WOS).

Table 9. Key contributions from deep learning.

Study Methodology Key Contributions

Liu et al. [56] Convolutional Neural Networks
(CNNs)

Exhibited better performance as compared to spatial and transform domain methods, highlighting
the capability of CNN to extract spatial and textural characteristics.

Yu Liu et al. [63] CNNs with fusion rules and activity
level estimation

Implemented local filters and clarity maps to facilitate the integration of high-frequency features,
enhancing fusion quality.

Gibson et al. [64] Deep networks Highlighted the significance of deep learning in neurological diagnosis and enhancing fusion at the
pixel level for diagnostic accuracy.

Xia et al. [65] Multiscale decomposition combined
with CNNs Better division of high/low-frequency components, facilitating detailed and multi-resolution fusion.

Wang et al. [66] Siamese CNNs with activity-guided
weight maps

Increased structural richness in final fused images via activity-guided weight maps. Enhancing the
retention of essential features

Li et al. [67] CNN-based Concentrated on real-time processing of multimodal images, providing practical utility in clinical
settings.

Chuang et al. [68] Fusion U-Net and Autoencoder (FW-
Net)

A hybrid encoder-decoder structure was introduced, with potential for further expansion to PET-
MRI and SPECT fusion.

Kumar et al. [69] CNNs Proposed cross-domain applications, using CNNs for thermal-visual fusion.

Shafai et al. [70] Hybrid CNN-based fusion pipeline Combined three images using traditional approaches, providing a reduction in redundancy and
enhancing the semantic quality in fused outputs.

Ghosh [71] Dual U-Net FW-Network Concentrated on enhancing disease localization and segmentation by addressing semantic
degradation in fused outputs.

Maqsood  and  Javed  [77]  employed  two-scale  decom-
position with spatial gradients to enhance edges. Wang Z
et al. [78] and Liu Y et al. [79] employed adaptive sparse
coding  and  total  variation  transformations,  enhancing
detail  retention  while  diminishing  high-frequency  noise.
Yadav [80] utilized independent and principal component

analysis using a wavelet framework but observed residual
noise and artifacts. In his study, Nath [81] showed that the
Stationary  Wavelet  Transform  (SWT)  surpasses  the
standard  Discrete  Wavelet  Transform (DWT)  in  terms  of
entropy preservation.  Huang et  al.  [82]  emphasized that
while  hybrid  models  enhance  established  frameworks,
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problems persist, especially in feature extraction and color
distortion. These constraints stimulated investigation into
hybrid  deep  learning  strategies.  Harmeet  et  al.  [83]
integrated ANFIS with cross-bilateral filtering, resulting in
enhanced entropy (2.92), and suggested volumetric fusion
for future neuroimaging applications. Harpreet et al. [84]
conducted a systematic review emphasizing the necessity
for precise, reliable, and interpretable fusion techniques.

Polinati et al. [85] and Li et al. in 2021 [86] introduced
innovative  frameworks  employing  Variational  Mode
Decomposition (VMD), local energy gradients, and bilateral
filtering,  all  designed  to  improve  clarity  and  reduce
luminance deterioration. Zhu et al. [87] and Alseelawi et al.
[88] concentrated on enhancing NSST-DTCWT-based fusion
techniques  to  achieve  equilibrium  between  texture  and
structural  integrity.  Alseelawi’s  work  prominently
highlighted velocity and visual excellence, using PCNN as a
guiding  framework.  Kalamkar  and  A  Mary  [89]  utilized
transfer learning with DWT, attaining enhanced structural
similarity index values. Goyal and Dogra [90] developed a
cross-bilateral,  edge-preserving  fusion  filter  that  reduces
artifacts while improving image quality. Likewise, Shafai et
al.  [91]  amalgamated  CNN  with  three  traditionally  fused
image sets to improve overall image quality and diagnostic
efficacy.  Zhou  et  al.  [92]  tackled  issues  of  brightness
degradation and detail retrieval by the application of NSST
and  Improved  Structure  Tensor  (IST)  decomposition,
resulting  in  enhanced  contrast  while  differentiating

smoothing,  edge,  and  corner  layers.
Kittusamy  et  al.  [93]  utilized  Joint  Sparse

Representation  (JSR)  and  NSCT  to  attain  enhanced  high
perceptual  clarity  in  MRI-CT  fusion.  Dinh  [94,  95]
formulated  two  complementary  models  to  address
inadequate contrast and edge degradation through a three-
scale  decomposition  and  local  energy-based  fusion  rules.
Balakrishna  et  al.  [96]  evaluated  nine  DWT-based
combinations,  validating  the  method’s  efficacy  in  the
detection  of  abnormalities  and  clinical  planning.
Moghtaderi et al. [97] suggested a Multilevel Guided Edge-
Preserving  Filtering  (MLGEPF)  technique  that  combined
computational expense with structural accuracy. Zhao et al.
[98]  proposed  a  novel  method  based  on  three-scale
frequency  decomposition  along  with  SSIM-optimized
feature blending, which significantly facilitates the process
of fusing MRI and PET images for brain tumor examination.
Various hybrid combinations,  along with their  advantages
and disadvantages, are described in Table 10.

Table  11  signifies  the  evolving  emphasis  of  research
within  Multimodal  Medical  Image  Fusion  (MMIF)  over
three distinct phases. Spatial domain methods prevailed in
the  initial  period  but  have  since  been  replaced  by  more
sophisticated  techniques.  Frequency  domain  techniques
have shown significant output growth and have sustained
stability.  Sparse  representation  techniques  have
transitioned from minimal utilization in their first stages to
considerable significance in recent years.

Table 10. Various hybrid combinations along with advantages and disadvantages.

Author/ Year Hybrid Combination Advantages Disadvantages

Chen Y, 2018 [72] NSCT + PCNN Improves contrast; effective for multi-resolution
fusion

Complex; sensitive to noise levels and
parameter tuning

Wang et al., 2018 [73] Adaptive Decomposition + Texture
Integration

Dynamic layer integration improves color and
texture representation

Requires rule tuning; may introduce
artifacts

Bhateja V et al., 2018 [74] Shearlet + NSCT + Weighted PCA High spectral-spatial fidelity; suited for
PET/CT/MRI

Computationally intensive; color
normalization required

Du J et al., 2019 [75] Separate Decomposition for MRI
and PET

Customized decomposition maintains modality-
specific features

High design complexity; lacks real-time
scalability

Wang Z et al., 2020 [78] Adaptive Sparse + Laplacian
Pyramid

Minimizes noise in high-frequency ranges;
adaptive sparsity May be unstable with varying image types

Yadav, 2020 [80] Wavelet + ICA/PCA Elementary; broadly applicable; improves
interpretability Noise sensitivity; potential overfitting

Nath B Ashwa, 2020 [81] SWT vs DWT SWT retains greater energy and detail
compared to DWT Requires precise coefficient tuning

Harmeet K et al., 2021
[83] ANFIS + Cross-Bilateral Filter Enhanced entropy; edge detail maintained Requires ANFIS model training and tuning

Shafai et al., 2022 [91] CNN + Multi-Input Fusion Efficient and effective; reduces redundancy Quality depends on pretrained models
Kalamkar and A Mary,
2022 [89] Transfer Learning + DWT Improved structural similarity and

generalization Training requires large datasets

Zhou et al., 2022 [92] NSST + IST (Improved Structure
Tensor) Maintains brightness and local structure Complex to implement; computationally

heavy.
Kittusamy et al., 2023
[93] JSR + NSCT Elevated contrast and detail retention in soft

tissues
Requires dictionary learning; time-
consuming

Dinh, 2023 [94] Three-Scale Decomposition + Local
Energy

Prevents information loss in edges; enhances
contrast Parameter tuning is crucial; risk of blur

Moghtaderi et al., 2024
[97]

Guided Edge-Preserving Filtering
(MLGEPF)

Prompt and reliable; balances performance and
quality Filter design and scale sensitivity

Zhao et al., 2024 [98] Guided Fusion (Smoothing + Global
Optimization) Maintains texture, noise, and structure clearly May overlook fine details if the structure is

misclassified
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Table 11. Web of Science records illustrate the evolution of domain usage in MMIF.

Domain Early Phase (2000–2010) Growth Phase (2011–2017) Boom Phase (2018–2024)

Spatial High Medium Declining
Frequency Medium High Stable
Sparse Representation Very Low Medium High
Deep Learning None Emerging (post-2016) Dominant
Hybrid Low Emerging Rising sharply

Table 12. Comparative analysis of MMIF domains – advantages, limitations, and applications.

Domain Advantages Limitations Typical Applications

Spatial Domain
[19]

Elementary execution, Better color
representation. Rapid computation

Edge blurring, Low SNR, Spectral
distortion SPECT-MRI fusion using HSV- X-ray/CT overlays

Frequency Domain [50] Elevated SSIM- Good texture and edge
preservation

Complex registration, High
computational cost

Tumor localization (MRI-PET)- Brain mapping
using NSCT and Laplacian Pyramid

Sparse Representation
[60, 61]

Enhanced contrast clarity-Concise
representation, Good noise removal

Artifacts from basis mismatch, Edge
degradation

CT-MRI brain fusion utilizing K-SVD- Dictionary
learning for tumor detection

Deep Learning
[4, 64]

Automatically acquires complex features,
High fusion accuracy

Requires large datasets, Risk of
overfitting

U-Net fusion in COVID detection- GANs for
whole-body PET/CT integration

Hybrid Domain
[83, 88]

Combines domain strengths, High
robustness

Increased model complexity,
Difficult tuning

NSCT + PCNN fusion- DWT-IFS-PCA in
multimodal cancer detection

Deep  learning  was  nearly  non-existent  before  2016,
but  has  become  the  dominant  methodology.  Hybrid
approaches, which amalgamate multiple techniques, have
experienced  significant  expansion,  signifying  a  trend
towards  integrative  and  adaptive  fusion  approaches.  A
comprehensive  analysis  of  Multimodal  Medical  Image
Fusion  (MMIF)  domains  emphasizing  their  strengths,
weaknesses, and principal application areas is highlighted
in Table 12.

5. APPLICATIONS OF IMAGE FUSION IN CLINICAL
MEDICINE

This  section  highlights  the  integration  of  structural
medical imaging modalities through fusion techniques and
their clinical applications, especially in surgical planning,
oncology,  orthopedics,  and  neurosurgery.  The  following
examples highlight recent advances and use cases where
image fusion has improved diagnosis, treatment accuracy,
and procedural efficiency.

5.1. Surgical Planning Using Synthetic CT from MRI
A recent study has explored the feasibility of generating

synthetic Computed Tomography (CT) images of the lumbar
spine  from  Magnetic  Resonance  Imaging  (MRI)  using  a
patch-based  convolutional  neural  network.  This  approach
aimed to support pre-operative planning without exposing
patients to ionizing radiation using deep learning. The study
involved three cases and demonstrated that deep learning-
enabled MRI-to-CT conversion offers high-quality structural
visualization,  reducing  radiation  exposure  compared  to
conventional  CT  scans  (typically  3.5–19.5  mSv  for  spine
imaging) [99].

5.2.  Orthopedic  Implant  Design  and  Additive
Manufacturing

The combination of CT and MRI has also been pivotal in
the  design  of  patient-specific  orthopedic  implants.  These
modalities  are  employed  to  capture  comprehensive
anatomical  data,  including  size,  shape,  texture,  and  bone
density. This facilitates the development of custom implants
and allows for the reconstruction of traumatic bone defects
through additive manufacturing technologies [100].

5.3. Management of Complex Fractures Using Rapid
Prototyping

Fusion  imaging  has  enabled  advances  in  Rapid
Prototyping  (RP)  and  3D  reconstruction,  particularly  for
complex fractures in anatomical regions such as the joints,
acetabulum, and spine. RP assists surgeons in visualizing
fracture  geometry  preoperatively,  which  improves  the
accuracy  of  anatomical  reduction  and  reduces  surgical
time,  anesthesia  duration,  and  intraoperative  blood  loss
[101].

5.4. Surgical Effects of Resecting Skull Base Tumors
Using Preoperative Multimodal Image Fusion

A  retrospective  study  was  conducted  on  47  patients
with  skull  base  tumors.  Preoperative  CT  and  MRI  data
acquisition  were  performed  using  GE  AW  workstation
software for co-registration, fusion, and three-dimensional
reconstruction  of  the  brain.  The  surgical  plan  was
designed based on multimodal images. The application of
the fusion technique provided essential visual guidance in
skull  base  tumor  surgery,  assisting  neurosurgeons  in
accurately  planning  the  surgical  incision  and  precisely
resecting  the  lesion  [102].
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5.5. Trigeminal Neuralgia Treatment with Integrated
Neuro-Navigation

In 13 patients undergoing percutaneous radiofrequency
trigeminal rhizotomy, the fusion of MRI and intraoperative
CT (iCT) images provided improved anatomical delineation
of  the  trigeminal  cistern.  This  integration  supports  more
accurate  targeting,  especially  in  recurrent  cases  of
trigeminal neuralgia. The study emphasized the benefits of
fusion-guided neuro-navigation and suggested that  longer
follow-ups  are  needed  to  assess  long-term  therapeutic
efficacy  [103].

5.6.  Frameless  Stereotactic  Radiosurgery  with
Gamma Knife Icon

In  a  clinical  series  of  100  patients,  MRI-CBCT (Cone
Beam  CT)  fusion  was  utilized  for  frameless  stereotactic
radiosurgery using the Gamma Knife Icon. MRI provided
superior  soft  tissue  contrast,  while  CBCT  served  as  the
baseline  for  stereotactic  registration.  The  adaptive  dose
distribution was computed based on the patient's real-time
geometry after fusion, optimizing treatment accuracy. This
method overcomes the limitations of traditional CT-guided
radiotherapy by  ensuring better  alignment  of  tumor and
anatomical landmarks [104, 105].

5.7.  Image  Fusion  in  Precision  Medicine  for
Oncology

In  the  context  of  precision  oncology,  fusion  imaging
technologies are increasingly used to enhance diagnostic
accuracy  and  individualized  treatment  planning.  The
integration  of  CT,  MRI,  and  PET  enables  better
visualization of tumor morphology and metabolic activity,
facilitating more accurate localization and classification of
malignancies.  Such  multimodal  fusion  approaches  are
pivotal  in  improving  therapeutic  outcomes  and  reducing
harm to healthy tissue [106].

5.8. Image Fusion in the Diagnosis and Treatment of
Liver Cancer

The  rapid  advancement  of  medical  imaging  has
facilitated  the  effective  application  of  image  fusion
technology  in  diagnosis,  biopsy,  and  radiofrequency
ablation,  particularly  for  liver  tumors.  Employing  image
fusion  technology  enables  the  acquisition  of  real-time
anatomical images overlayed with functional images of the
same  plane,  thereby  enhancing  the  diagnosis  and  treat-
ment  of  liver  cancers.  This  study  provides  a  compre-
hensive examination of the fundamental concepts of image
fusion  technology,  its  application  in  tumor  therapies,
specifically for liver cancers. It finishes with an analysis of
the  limitations  and  future  prospects  of  this  technology
[107].

6.  IMAGE  QUALITY  METRICS  IN  MEDICAL  IMAGE
FUSION

The assessment of medical image fusion is crucial for
verifying the efficacy of fusion algorithms. Image quality
measures  evaluate  the  visual  integrity,  information

retention, and diagnostic value of the fused image. These
assessments  are  conducted  utilizing  either  subjective  or
objective approaches [108, 109].

6.1. Subjective Evaluation
Subjective analysis entails expert evaluators who assess

the images according to their visual characteristics, such as
object  clarity,  spatial  detail,  geometric  consistency,  and
color  equilibrium.  This  method,  although  indicative  of
human  perception,  is  compromised  by  observer  bias,
environmental  reliance,  and  lack  of  reproducibility,
rendering  it  less  reliable  for  quantitative  comparison.

6.2. Objective Evaluation
It  utilizes  the  mathematical  and  statistical  metrics  to

measure image quality quantitatively.  These metrics yield
reliable, quantifiable, and algorithm-independent outcomes,
making  them  crucial  for  the  consistent  and  automated
validation  of  fusion  approaches.  They  are  further
categorized into two categories such as those employing a
reference  image  and  those  without  a  reference  image,  as
depicted in Table 13,  with each parameter demonstrating
distinct  characteristics.  The  objective  image  fusion
performance  characterization  utilizing  the  gradient
information is also taken into account. This provides an in-
depth analysis by assessing total fusion performance, fusion
loss,  and fusion artifacts as represented in Table 14.  It  is
noted that the total fusion performance is depicted by the
sum of these three, and the result is unity, as shown in the
formula [110-113].

7. EXPERIMENTAL SETUP AND DISCUSSION
In  this  section,  a  comprehensive  evaluation  of  eight

multimodal  medical  image  fusion  techniques,  LEGFF,
FGF-XDOG, MDHU, FDO-DPGF, CSMCA, S-ADE, PCLLE-
NSCT,  and  NSST-AGPCNN,  is  conducted  for  dataset  1
[114]  utilizing  diverse  quantitative  criteria  to  evaluate
information content, image quality, edge preservation, and
noise reduction, and has been described in Table 15 along
with  mean  and  standard  deviation.  Of  these  evaluated
approaches, LEGFF exhibited the highest entropy of 6.86
and  average  gradient  of  7.06,  signifying  enhanced
information richness and edge definition, while the mean
entropy  value  is  6.44  ±  0.35.  CSMCA  demonstrated
superior image quality, attaining the highest PSNR (63.28)
and  the  lowest  MSE  (0.0305),  indicative  of  exceptional
image  reconstruction  with  minimum  error.  The  spatial
frequency  values,  which  assess  image  detail,  showed  a
moderate  spread  (17.79  ±  0.56),  demonstrating  that
CSMCA and LEGFF retained excellent textural  detail.  In
contrast,  standard  deviation  results  have  revealed  that
LEGFF and S-ADE maintained a significant contrast. FGF-
XDOG  and  S-ADE  achieved  the  best  visual  information
fidelity (VIF ~0.88), indicating superior perceptual quality.
PCLLE-NSCT  exhibited  superior  structural  similarity,
achieving a reduced spatial correlation difference (SCD =
1.72) compared to others. The Correlation Coefficient (CC)
analysis indicated a preference for CSMCA and FDO-DPGF
(CC  ~0.698),  emphasizing  their  robust  correspondence
with  reference  images.
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Table 13. MMIF Metric with a reference image – definitions and interpretations.

Metric Name Description Formula / Expression -

Average Pixel
Intensity (API) Measures image contrast by computing average intensity values. [110,

111]

Standard Deviation
(SD)

Measures the contrast or spread of the pixel intensity values
around the mean intensity. A higher SD indicates more variation
and, therefore, more detail and contrast.

[112]

Average Gradient
(AG)

Evaluates the overall clarity and detail of the image by computing
the average magnitude of the gradients in the image. To assess
the sharpness and clarity of an image and quantify the overall
contrast by measuring the rate of intensity change across
adjacent pixels.

[112]

Entropy (H) Quantifies information content or randomness in the image. A
higher entropy value indicates a richer and more complex image. [113]

Mutual Information
(MI)

Assesses shared information between source and fused images. It
should have a high value for better fusion.

[110,
113]

Information
Symmetry (FS)

Evaluates the symmetry of information between fused and input
images. [110]

Correlation
Coefficient (CC)

It gives similarity in the small structures between the original and
reconstructed images, where a higher value of correlation means
more information is preserved. Determines the linear relationship
between input and fused images.

[111]

Spatial Frequency
(SF)

Measures the overall activity level or texture of an image,
combining the row and column frequency components. [113]

Table 14. MMIF metric without a reference image – definitions and interpretations.

Metric Name Description Formula / Expression Citations

Qab/f Quantifies retained information from the source to the fused image. Qab/f +Lab/f + Nab/f =1 [110, 112]
Lab/f Measures information loss during fusion. Qab/f +Lab/f + Nab/f =1 [110, 112]
Nab/f Estimates artifacts or noise introduced after fusion. Qab/f +Lab/f + Nab/f =1 [110, 112]

Table 15. Quantitative Evaluation of various MMIF techniques on MRI and CT images for data set 1.

Technique
LEGFF FGF-XDOG MDHU FDO-DPGF CSMCA S-ADE PCLLE-NSCT NSST -AGPCNN Mean± SD

Evaluation Parameter

EN 6.857 6.407 5.992 6.789 6.378 6.005 6.803 6.296 6.44 ± 0.35
SF 18.72 17.37 18.32 17.36 18.13 17.85 17.16 17.36 17.79 ± 0.56
SD 59.48 59.74 59.38 53.64 51.91 58.99 57.39 49.40 56.24± 4.03

PSNR 61.85 61.55 61.53 62.72 63.27 61.58 61.93 63.55 62.26 ± 0.82
MSE 0.0424 0.0454 0.0456 0.0347 0.0305 0.0451 0.0416 0.0321 0.04 ± 0.01
MI 3.046 4.710 5.854 3.074 2.328 5.795 3.291 1.489 3.70 ± 1.60
VIF 0.776 0.885 0.874 0.869 0.652 0.884 0.797 0.483 0.78 ± 0.14
AG 7.059 6.440 6.511 6.332 6.574 6.460 6.551 6.182 6.51 ± 0.25
CC 0.671 0.686 0.666 0.698 0.698 0.663 0.652 0.645 0.67 ± 0.02

SCD 1.823 1.898 1.841 1.766 1.746 1.831 1.724 1.453 1.76 ± 0.14
Qabf 0.731 0.774 0.778 0.771 0.654 0.776 0.739 0.600 0.73 ± 0.07
Nabf 0.018 0.021 0.024 0.012 0.020 0.027 0.025 0.018 0.02 ± 0.00

FGF-XDOG  and  MDHU  attained  the  highest  edge-based
similarity (Qabf >0.77), indicating efficient edge retention,
which  is  essential  in  diagnostic  imaging.  FDO-DPGF
demonstrated  the  lowest  noise-based  similarity  (Nabf  =
0.0126), indicating exceptional noise suppression. Mutual

Information (MI), crucial for evaluating modality comple-
mentarity, showed significant variance (mean = 3.7 ± 1.5),
with MDHU and S-ADE outperforming. Visual Information
Fidelity  (VIF)  and  Qabf.  NSST-AGPCNN  and  LEGFF
regularly  score  well  across  most  criteria,  demonstrating
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superior  fusion  quality.  Future  studies  should  provide
larger  datasets  with  repeated  trials  to  allow  for  more
rigorous  statistical  inferences.

The visual results in Fig. (16) also depict similar results
where  the  source  image  (a)  is  a  T1-weighted  MRI  image
characterized by the dark appearance of cerebrospinal fluid
and the high contrast between gray and white matter. CSF
appears hypointense owing to the diminished signals on T1
T1-weighted  sequence.  T1-weighted  scans  offer  superior
anatomical detail and are commonly employed to evaluate
brain morphology and the integrity of cerebral structures.
The  source  image  (b)  is  a  non-contrast  computed
tomography  scan  of  the  brain,  highlighting  the  bony
content. CT scans are highly effective in identifying acute
bleed, cerebral infarcts, fractures, and calcifications owing
to  their  sensitivity  to  dense  tissues  such  as  bone.  Bone
exhibits  hyper-density  (white)  because  of  elevated  X-ray
attenuation as compared to soft tissue. The images from (c)
to  (j)  are  the  final  fused  images  of  these  source  images
using the respective technique.

Table  16  provides  an  evaluation  for  dataset  2  [114],
using  the  same  set  of  techniques,  and  demonstrates
diverse efficacy across essential quantitative parameters.

The  average  Entropy  (EN)  is  5.30  ±  0.09,  reflecting
consistent  information  content  with  minimal  variance.
Spatial Frequency (SF), which is an indicator of textural
detail,  showed  greater  variation  (20.38  ±  1.66),  with
LEGFF  achieving  the  highest  score  (23.77),  suggesting
better edge detail retention.

Standard Deviation (SD)  and PSNR were also  stable,
with  PSNR  averaging  68.44  ±  0.52  dB,  indicating
excellent noise suppression and fidelity. The Mean Square
Error  (MSE)  values  remained  low  (0.01  ±  0.00),
reinforcing  the  high-quality  reconstruction  by  all
techniques,  particularly  NSST-AGPCNN  (lowest  MSE  =
0.0074).

Mutual  Information  (MI)  values  showed  moderate
variance (3.87 ± 0.61), with S-ADE standing out as having
the highest MI (4.976), highlighting its capacity to retain
complementary modality features. VIF and CC metrics also
revealed  strong  visual  and  structural  correlation,
particularly  for  FDO-DPGF  and  LEGFF.  All  techniques
performed  well  with  minor  variability  across  metrics.
Techniques like NSST-AGPCNN and S-ADE demonstrated
superior balance in contrast enhancement, edge retention,
and structural fidelity.

Fig. (16). Qualitative results for MRI/CT images. Dataset 1 (a) MRI image, (b) CT image, (c) LEGFF, (d) FGF-XDoG, (e) MDHU, (f) FDO-
DPGF, (g) CSMCA, (h) S-ADE, (i) PCLLE NSCT, (j) NSST AGPCNN.
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Table 16. Quantitative evaluation of various MMIF techniques on MRI and CT images for data set 2.

Technique
LEGFF FGF-XDOG MDHU FDO-DPGF CSMCA S-ADE PCLLE-NSCT NSST -AGPCNN Mean ± SD

Evaluation Parameter

EN 5.336 5.322 5.210 5.262 5.426 5.317 5.382 5.161 5.30 ± 0.09
SF 23.77 20.43 20.40 18.12 20.20 20.13 18.91 21.07 20.38 ± 1.66
SD 61.97 62.11 61.12 57.59 56.33 61.59 58.77 55.31 59.35 ± 2.71

PSNR 68.36 68.26 68.01 68.24 68.82 67.76 68.63 69.42 68.44 ± 0.52
MSE 0.0094 0.0096 0.0102 0.0097 0.0085 0.0108 0.0088 0.0074 0.01 ± 0.00
MI 3.426 4.088 4.378 4.118 3.233 4.976 3.618 3.132 3.87 ± 0.63
VIF 0.577 0.594 0.625 0.870 0.528 0.682 0.625 0.517 0.63 ± 0.11
AG 6.397 5.580 5.212 4.723 5.754 5.355 5.348 5.681 5.51± 0.48
CC 0.926 0.927 0.914 0.903 0.914 0.910 0.919 0.923 0.92 ± 0.01

SCD 1.249 1.268 1.106 0.730 0.769 1.114 0.992 0.790 1.00 ± 0.22
Qabf 0.595 0.609 0.605 0.609 0.546 0.645 0.585 0.583 0.60 ± 0.03
Nabf 0.017 0.027 0.018 0.0153 0.028 0.006 0.035 0.0203 0.02 ± 0.01

Fig. (17). Qualitative results for MRI/CT images Date set 2 (a) CT image, (b) MRI image, (c) LEGFF, (d) FGF-XDoG, (e) MDHU, (f) FDO-
DPGF, (g) CSMCA, (h) S-ADE, (i) PCLLE NSCT, (j) NSST AGPCNN.

The visual results for dataset 2 are depicted in Fig. (17),
where the source image (a) is a computed tomography scan
of the brain proficient in assessing intracranial  bleed and
cerebral fractures. The image provides a clear depiction of
the  bone  architecture  with  no  evident  indications  of
structural  abnormalities.  The  source  image  (b)  is  a  T2-
weighted  MRI  scan  of  the  brain,  illustrating  the
differentiation of gray and White matter, and is marked by
bright cerebrospinal fluid. The imaging modality is effective
for  identifying  pathological  alterations,  including  edema,
demyelination,  and  infarctions.  The  images  from (c)  to  (j)
are the final fused images of these source images using the
respective technique.

7.1. Research Trends in Modality Integration
The  growing  interest  in  MMIF  studies  from  2015  to

2024,  analyzed  according  to  the  three  most  commonly
used  modality  groups,  MRI–PET,  MRI–CT,  and
MRI–SPECT,  is  illustrated in  Fig.  (18).  MRI–PET fusions
report  the  greatest  number  of  publications,  with  a
significant  boost  in  2021,  representing high influence in
oncology  and  neuroimaging.  The  constant  growth  of
MRI–CT literature (although its volume is less compared to
MRI–PET) indicates growing use for surgical planning, and
tasks  where  both  soft  and  hard  tissue  information  is
needed.
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Fig. (18). Research Trend according to multi-modality combinations (WOS).

The  MRI–SPECT  fusion  approach  is  the  least
discussed, possibly due to the lower spatial resolution and
the  comparatively  narrower  use  of  SPECT  compared  to
PET.  The  possible  correlation  of  periodic  changes  in
MRI–PET  and  MRI–CT  domains  with  the  emergence  of
new advances,  such as convolutional  neural  networks or
transformer  models,  indicates  that  these  improvements
have  likely  reinforced  the  fusion  and  registration
processes. The data shows an increasing interest in hybrid
imaging  as  the  main  research  topic,  highlighting  the
clinical  necessity  for  accurate  diagnostics  based  on  the
integration of complementary modalities.

8. KEY CHALLENGES AND LIMITATIONS

8.1. Data Scarcity and Imbalance in Public Datasets
The  foundation  of  any  robust  MMIF  model  is  a

sufficiently large and diverse dataset. However, available
multimodal image datasets such as AANLIB, ADNI, TCIA,
and MIDAS lack balance in organ representation, modality
pairing,  and  demographic  diversity.  While  these
repositories  provide  aligned  pairs  (e.g.,  MRI–PET),  they
often  suffer  from  incomplete  labeling  and  variation  in
acquisition protocols. For example, Venkatesan et al. [15]
emphasized  that  most  fusion  research  focuses  on  brain
datasets  (MRI-CT),  leaving  thoracic,  abdominal,  and
musculoskeletal fusions underrepresented. The imbalance
leads  to  biased  models  that  cannot  generalize  across

anatomical  regions.  Moreover,  annotating  multimodal
images,  particularly  PET  and  SPECT,  requires  domain
expertise  and  is  cost-intensive,  limiting  supervised
learning  approaches.  Recent  works,  such  as  those  by
Tirupal  et  al.  [8],  propose  the  use  of  fuzzy  sets  and
unsupervised  learning  to  overcome  the  lack  of  labels,
while Dinh [94, 95] explores decomposition techniques to
create proxy supervision.

8.2. Registration and Inter-modality Inconsistency
Accurate  registration  is  pivotal  in  MMIF,  as

misalignment between modalities can propagate errors into
every  subsequent  fusion  stage.  Unlike  unimodal
registration, where intensity similarities guide optimization,
multimodal images exhibit diverse characteristics (e.g., CT
for  density,  MRI  for  soft  tissues,  PET  for  metabolism),
making  intensity-based  alignment  ineffective.  Errors  in
registration  introduce  artifacts,  structural  shifts,  and
contrast mismatches, especially at organ boundaries. Goyal
et al. [90] and Ibrahim et al. [109] report that deformable
and  affine  transformations  often  underperform  when  the
inter-modality  gap  is  large,  such  as  in  PET–MRI  or
SPECT–CT  fusion.  Furthermore,  hybrid  methods  that
employ wavelet or Laplacian transforms are highly sensitive
to  minor  misregistrations,  causing  blur  or  duplication  of
anatomical features. Although deep-learning-based spatial
transformers, such as the Swin Transformer by Ghosh [71],
offer  improved  alignment,  these  solutions  are
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computationally  expensive  and  poorly  validated  across
multiple organs. Thus, the modality inconsistency and lack
of robust, generalized registration algorithms significantly
hinder the clinical reliability of MMIF systems.

8.3.  Computational  Overhead  in  Deep  Learning-
based MMIF

While Deep Learning (DL) methods, particularly CNNs,
GANs, and U-Nets, have revolutionized image fusion, they
bring  substantial  computational  burdens.  Training  these
models  requires  massive  datasets,  high-end  GPUs,  and
time-intensive  tuning.  Li  et  al.  and Zhang et  al.  [60,  61]
showed that deep CNNs produce sharper and semantically
richer  fused  images,  but  the  cost  of  training  (over  20
million parameters) and risk of overfitting persist. These
limitations  restrict  the  practical  deployment  of  MMIF in
real-time  or  edge-based  medical  devices  like  portable
ultrasound  or  emergency  CT  units.  Efforts  to  develop
lightweight architectures, such as Mobile Net or efficient
transformer  hybrids,  have  been  partially  successful.  For
instance,  Kalamkar  &  Geetha  [89]  propose  transfer
learning-based MMIF using pretrained models to reduce
training  time.  However,  performance  degradation  and
sensitivity to modality shifts are still major issues. Hybrid
DL models,  such  as  PCNN + NSCT or  GANs over  NSST
coefficients,  further  increase  architectural  complexity,
which  limits  scalability  and  increases  latency  during
clinical  inference.

8.4.  Ethical  and  Privacy  Concerns  in  Multimodal
Data Use

The use of medical images, especially in a multimodal
and  longitudinal  context,  raises  significant  privacy  and
ethical  issues.  Most  MMIF  datasets  are  derived  from
patients with chronic or  terminal  conditions,  making de-
identification difficult due to unique anatomical signatures
(e.g.,  tumors  or  prostheses).  Compliance  with  GDPR,
HIPAA,  and institutional  IRB guidelines restricts  dataset
sharing. El-Shafai et al. [70] observed that fewer than 20%
of  fusion  studies  in  recent  years  could  access  external
datasets,  limiting  generalizability  and  leading  to  model
bias. Federated learning, as explored in Goyal et al. [90],
is a promising avenue to train models across silos without
data  exchange.  However,  challenges  in  harmonizing
modalities,  synchronizing  update  cycles,  and  addressing
vulnerability to gradient attacks remain. Ethically, there's
a lack of transparency in fusion models. Black-box CNNs
may  produce  composite  images  that  suppress  or
misrepresent  subtle  pathologies.  There  are  also  legal
uncertainties in attributing diagnostic responsibility when
AI-generated fusion images are used clinically. To address
this,  future  MMIF  research  must  include  explainable  AI
(XAI) methods, probabilistic uncertainty maps, and formal
ethical  frameworks  that  define  accountability  for  AI-
assisted  diagnostics  [115].  While  the  field  of  MMIF
continues  to  evolve  rapidly,  these  four  key  challenges,
data imbalance, registration inconsistency, computational
overhead,  and  ethical  constraints,  remain  persistent
obstacles. Addressing these will require interdisciplinary
collaboration  between  data  scientists,  radiologists,

ethicists,  and  software  engineers.  The  integration  of
robust  registration  models,  edge-efficient  architectures,
federated training schemes, and ethically compliant data
pipelines will be vital to unlocking MMIF’s full potential.

9.  FUTURE  RESEARCH  DIRECTIONS  IN
MULTIMODAL MEDICAL IMAGE FUSION

9.1. Explainable AI (XAI) in MMIF
Explainable artificial intelligence is a technique for AI-

powered diagnosis and analysis that ensures features such
as ethics, transparency, and accountability in the traditional
approach to AI. This will lead to outcome tracing and model
improvements  in  health  care.  EXAI  relies  on  feature
extraction  to  make  the  model  more  explainable  and
interpretable. EXAI proposed a self-explanatory framework
based  on  design  principles  for  understanding  and
predicting  the  behavior  of  ML/DL  models.  Although  deep
models  such  as  CNNs  and  Transformers  outperform
traditional  algorithms,  their  “black-box”  nature  hinders
clinical trust. Recent work integrates attention maps, Layer-
wise  Relevance  Propagation  (LRP),  and  Grad-CAMs  into
MMIF pipelines, allowing radiologists to verify the influence
of fused features during diagnostics [115, 116].

9.2. Quantum Image Fusion
Quantum computation in medical image processing has

improved  edge  detection,  segmentation,  watermarking,
encryption,  and  classification.  A  quantum  edge  detection
technique using superposition and fuzzy entropy can better
detect  strong  and  weak  edges.  Automatic  hippocampal
segmentation  using  a  Quantum-Inspired  Evolutionary
Algorithm  (QIEA)  yielded  good  correlation  between
segmented  and  microscopic  images.  A  hybrid  technique
using  QPSO  and  fuzzy  k-nearest  neighbours  enhances
cervical cancer cell classification on the Herlev dataset for
feature  selection  and  classification.  The  hybrid  method
decreased  features  from  17  to  7,  outperforming  Naive
Bayes  and  SVM  with  a  2%  to  11%  increase  in  accuracy.
These  inventions  show  how  quantum  computing  might
improve  medical  image  analysis  and  diagnosis  precision
[117].

9.3. Federated and Privacy-preserving MMIF
Machine learning algorithms learn to solve problems

autonomously  based  on  the  data  provided  to  them,  but
they require extensive training to do so. Personal data in
training datasets for AI systems, especially for health care
applications,  must  be  considered.  Data  from  special
categories  (including  health  data)  requires  more
safeguards  than  common  data  under  the  General  Data
Protection Regulation (GDPR). AI developers and users in
health  care  are  especially  affected  by  this  issue.  With
increasing data privacy regulations (e.g., GDPR, HIPAA),
centralized  MMIF  training  on  patient  data  faces  ethical
and legal  barriers.  Federated learning frameworks (e.g.,
FL-MedFuseNet)  enable  MMIF  model  training  across
distributed hospital nodes without sharing raw data. This
decentralized  approach  preserves  privacy  and  supports
continual learning from real-world clinical inputs [118].
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9.4. Robotic Surgery and Smart Operating Rooms
The  integration  of  MMIF  into  AI-assisted  robotic

surgeries is a fast-growing field. As the population ages,
the  prevalence  of  spinal  degenerative  illnesses  such  as
lumbar disc  herniation and spinal  stenosis  increases  the
need  for  accurate  and  safe  spinal  operations.  The  spine
intricacy  makes  surgery  difficult,  making  robotic  help
invaluable. Pedicle screw implantation is performed using
surgical  robots  like  TiRobot,  Mazor,  Da  Vinci,  ROSA,
Excelsius  GPS,  and  Orthbot,  which  enhance  precision,
reduce  operative  time,  decrease  the  chances  of
hemorrhage,  and  minimize  radiation  exposure.  These
approaches use unimodal CT scans, which cannot detect
nerves  and  intervertebral  discs.  The  incorporation  of  a
multimodal image fusion (CT/MR)- based software system
for  intraoperative  navigation  expands  the  horizons  of
robotic spinal surgery. Intuitive Surgical’s Da Vinci system
already  shows  early  adoption  of  MMIF-enhanced  visual
pipelines,  although  this  is  mostly  experimental.  Future
research could focus on ultra-low-latency hardware-driven
MMIF solutions embedded into surgical robots. NVIDIA’s
Clara, a GPU-accelerated platform, is used to segment and
diagnose  cardiac  images  in  real  time.  To  improve
processing  speed  and  accuracy,  the  system  takes
advantage of  powerful  DL algorithms explicitly  designed
for cardiac imaging. Using rigorous data processing and a
deep learning model, it can perform exact partitioning of
cardiac  components  and  identify  positioning  defects,
resulting in the diagnosis of rapid heart arrhythmia [119,
120].

9.5.  MMIF-based  Watermarking  for  Tele-health
Applications

Watermarking  in  medical  image  fusion  involves
embedding  a  hidden signal  (such  as  patient  ID,  diagnosis
detail, time stamps, or institutional information) into a fused
image  generated  from  multiple  modalities.  This  ensures
date  integrity,  ownership  authentication,  and  secure
communication  in  telemedicine  or  cloud  environments.
Embedding  of  watermark  is  done  by  techniques  like
Redundant  Discrete  Wavelet  Transform (RDWT),  Singular
Value  Decomposition  (SVD),  or  NSCT.  The  integration  of
deep learning needs further exploration to create adaptive
and intelligent watermarking methods [121].

CONCLUSION
This  comprehensive review concludes that  multimodal

medical  image  fusion  (MMIF)  is  a  growing  field  with
applications and modern techniques that allow the proper
use  of  all  available  information,  thus  contributing  to  the
improvement of clinical diagnostics. Firstly, the limitations
of unimodal imaging were established, and the clinical need
for  combining  MRI,  CT,  PET,  and  SPECT  was  explored.
Combining  strengths  in  each  modality  (by  way  of  fusion)
offers  synergistic  improvements  to  their  diagnostic
capability  while  addressing  the  limitations  that  each
modality  suffers  from  individually.  The  mentioned
approaches,  spatial  and  frequency-based  fusion  methods
such as PCA, DWT, and NSCT, have proved useful in many
early-stage applications owing to their simplicity and speed.

They are sensitive to noise and often suffer from issues like
edge  blurring  or  spectral  distortion.  This  led  to  the
development  of  more  advance  strategies  like  sparse
representation,  which  is  more  flexible,  particularly  under
uncertain and noisy imaging conditions. Additionally, when
applicable  with  multi-scale  transforms,  sparse  coding
improves  edge  structure  and  clarity  that  is  necessary  for
tumor detection and neurodegenerative diseases. With the
introduction  of  Deep  Learning  (DL)  and  hybrid  fusion
models  in  the  field,  a  paradigm  shift  has  occurred,
drastically improving fusion accuracy and robustness. It is
effectuated by various architectures such as CNNs, U-Nets,
GANs, Swin Transformers, etc. Deep Learning has brought
its weaknesses along, but it has also brought hybrid models
that blend Deep Learning with usual domains to minimize
and compensate for their respective weak points. Moreover,
high-quality  datasets  (TCIA,  ADNI,  OASIS,  AANLIB)  and
evaluation metrics (SSIM, MI,  and entropy) are used as a
standard  benchmark  for  MMIF  models.  The  results  of
experiments across two datasets in this review highlight the
effectiveness  of  hybrid  and  deep  learning-based
approaches.  Yet,  there  are  still  many  outstanding  issues.
Finding  its  way  into  clinical  practice  is  impeded  by  data
scarcity,  registration  inconsistencies,  the  computational
cost of DL models, and the ethical use of necessary patient
data.  The  promising  emerging  topics  of  interest  included
federated  learning,  explainable  AI,  quantum  fusion,  and
watermarking  in  telemedicine.  The  integration  of  MMIF
into  surgical  robotics  is  another  frontier  that  needs  to  be
explored.  Finally,  the  findings  of  this  review  offer  a
fundamental  analytical  lens  with  which  healthcare
professionals,  AI  researchers,  and  developers  of  MMIF
systems can improve the clinical scalability, interpretability,
and  ethics  of  the  systems  that  are  generated.  It  can  be
concluded  that  the  field  is  rapidly  evolving  and  holds
promise for improving clinical decision-making. MMIF had
demonstrated enhanced diagnostic accuracy by combining
information  from  multiple  sources,  improved  treatment
planning,  and  even  direct  benefits  to  patients  through
shorter  and  safer  procedures.  MMIF  offers  immense
potential  yet  has  limitations  like  registration  errors,
computational  burdens,  generation  of  artifacts,  loss  of
specific information, and a lack of standardized evaluation
metrics. Ultimately, ongoing interdisciplinary collaborations
will  significantly  enhance  precision  and  accuracy,
improving  patient  outcomes  in  the  years  to  come.
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