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Abstract:

Introduction: Magnetic Resonance Imaging (MRI) and High-Resolution Computed Tomography (HRCT) are crucial
for comprehensive diagnosis and treatment planning, as they provide detailed anatomical information. However,
noise introduced during image acquisition often degrades the quality of these images, obscuring key anatomical
features and complicating accurate diagnoses.

Methods: This study compared the performance of eight denoising algorithms: BM3D, EPLL, FoE, WNNM, Bilateral,
Guided, NLM, and DnCNN. Both objective metrics, including Mean Squared Error (MSE), Structural Similarity Index
(SSIM), and Peak Signal-to-Noise Ratio (PSNR), as well as perceptual quality metrics, such as NIQE, BRISQUE, and
PIQE, were employed to assess their effectiveness.

Results: BM3D consistently outperformed other algorithms at low and moderate noise levels, achieving the highest
PSNR and SSIM values while preserving structural integrity and perceptual quality. For high noise levels,
conventional algorithms, such as EPLL and WNNM, demonstrated competitive performance in homogeneous areas,
preserving fine texture, but were limited by computational complexity.

Discussion: One of the challenges in image denoising is preserving the finer detail structures of images while
efficiently removing noise. Finding a balance between the reduction of noise and preservation of image integrity can
be a lifesaving challenge, especially in cases where the images are in high detail, such as in the medical world.

Conclusion: This study highlights the trade-offs between denoising quality and computational efficiency among
various algorithms for MRI and HRCT images. While BM3D remains a dependable choice for moderate noise levels,
advanced deep learning-based methods, such as DnCNN, are better suited for handling significant noise variations
without compromising critical diagnostic features.
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1. INTRODUCTION

Medical imaging is essential to modern healthcare due
to its applications, including detailed profiling in diag-
nostics, treatment planning, and monitoring of various
diseases [1]. The two primary imaging modalities [2] are
Magnetic Resonance Imaging [3] and High-Resolution
Computed Tomography [4]. Although MRI is functional in
revealing detailed information in soft tissues, thus making
it unmatched in diagnosing neurological, musculoskeletal,
and cardiovascular conditions [5], HRCT [4] is superior in
providing detailed anatomical resolution in the lungs,
bones, and other structures, and produces high-resolution
scans necessary for detecting abnormalities, including
lung diseases [6]. However, the images from both MRI and
HRCT are often noisy, which degrades image quality and
hinders the detection of essential diagnostic information.
This is image denoising [7] in medical imaging [8], for
which the output should not remove noise, but preserve all
important anatomical details [9]. Several factors, including
equipment limitations, patient motion, and environmental
sources, can cause noise in MRI and HRCT. In medical
images, noise is most often categorized as Gaussian noise
[10], Rician noise [11], or Poisson noise [12], depending on
the imaging modality [13, 14] and the origin of the
degradation. Noise can drastically degrade the diagnostic
quality of medical images by blurring borders, reducing
contrast, and obscuring minute yet crucial information
[15]. Clinically, it may lead to misinterpretation, delayed
diagnosis, or further imaging to clarify the findings,
resulting in higher costs and increased patient exposure to
ionizing radiation [16]. Therefore, noise reduction that
preserves the integrity of the original structure of MRI and
HRCT images is crucial for accurate and efficient
diagnosis. Denoising medical images is a challenging
problem due to the delicate trade-off required between
noise reduction and preservation of essential diagnostic
characteristics. Over-smoothing an image to remove noise
may lead to the loss of critical anatomical details.

In contrast, under-smoothing will leave the residue of
noise, which still degrades the image's utility for diagnosis
[17]. A significant problem in MRI and HRCT denoising is
that clinically valuable information may be wiped away
due to poor contrast. Many pathologies present as subtle
contrast changes in the imaging of small tumors or early-
stage infections, and over-segmentation in such regions
makes it impossible to detect these essential features,
potentially leading to their missed detection [18].

Several techniques have been developed to mitigate
the noise present in medical images. More conventionally
known, these methods are mainly classified into spatial
domain and transform domain approaches [19]. In the
spatial domain, simple filters such as Gaussian, median,
and bilateral filters have been used to smooth images by
averaging the intensities of pixels. Simple and compu-
tationally efficient, but such filters generally fail to
preserve fine details within an image, especially in regions
with high-frequency content, such as edges and textures.
Techniques, such as wavelet denoising [20], when applied
in the transform domain, appear to be more promising.
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Wavelet transforms decompose the image into different
frequency components, allowing high-frequency compo-
nents, which often contain noise, to be reduced while pre-
serving low-frequency components that contain important
anatomical details [20]. It has been helpful in the
denoising of HRCT images. Furthermore, crucial infor-
mation regarding fine lung and bone structures is often
contained within their high-frequency content.

There has been considerable attention to the capabilities
of advanced algorithms based on machine learning [21] and
deep learning [22] for controlling noise in medical images
[23]. For example, it has been demonstrated that convo-
lutional neural networks [23] are superior at reducing noise
while preserving structural integrity. The latest denoising
techniques at the cutting edge include BM3D and DnCNN,
which employ different strategies and offer distinct
advantages. DnCNN uses deep learning to learn intricate
patterns in the noise from training data, whereas BM3D
relies on transform-domain processing and collaborative
filtering. The clinical scenarios exhibit varying degrees of
noise, ranging from optimized conditions with very low noise
levels to challenging settings, such as low-dose imaging or
rapid acquisitions, which have high noise variance [24]. This
variation necessitates the development of denoising
algorithms that are robust against various noise levels while
preserving the most critical features for diagnosis [25]. In
medical image denoising, one of the key challenges is to
inhibit noise without compromising over-smoothing and loss
of fine structural detail, which are often critical for
identifying subtle pathologies, such as early-stage tumors or
small lesions.

Denoising algorithms applied to MRI and HRCT images
under low and high noise variance conditions are eva-
luated in this comprehensive study. Using common assess-
ment metrics, such as PSNR, structural similarity index,
MSE, and perceptual quality measures like NIQE,
BRISQUE, and PIQE, the work quantitatively evaluates the
strengths and limitations of such algorithms. Such
evaluation should be critical in guiding the selection of
appropriate denoising techniques tailored to specific
clinical and operational requirements, thereby enhancing
the reliability and diagnostic accuracy of medical imaging.

2. LITERATURE REVIEW

Image denoising lies at the centre of interest in image
processing, a field that has been a focus of research for
several decades, with many methods proposed to remove
noise added to high-quality images, primarily through
Gaussian noise. Fig. (1a) explains the procedure adopted to
find and compile the literature on the review of the medical
image denoising. The basis of the first database search is
the use of Google Scholar with such keywords: Medical
Image Denoising, Gaussian Noise, MRI, HRCT, and Deep
Learning. Through this keyword search, 201 articles were
retrieved. These were further divided into two major
categories, which included the 50 review articles and 151
research articles. Further screening of the research articles
identified 36 journal articles and seven conference papers
that met the inclusion criterion, and ultimately led to their
inclusion in the literature review.
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Fig. (1b). Different categories of image denoising techniques.

This ordered selection ensures a comprehensive and 2.1. Spatial Domain
representative overview of both current and past research The authors have presented an effective technique for
advancements in the field of medical image denoising. removing mixed Gaussian and Random-valued Impulse

Fig. (1b) shows the different types of image denoising Noise (RVIN) in a study [26]. The proposed approach
techniques. consists of two stages: noise categorization and noise
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reduction. The three-sigma rule, extreme value processing,
and the adaptive centre-weighted median filter (ACWMF)
form the basis of the noise classifier. In contrast to
conventional “detecting then filtering” methods, the noise
reduction phase is divided into three steps: preliminary
RVIN removal, Gaussian noise removal, and final RVIN
removal. First, a noisy image that is roughly distorted by
Gaussian noise alone is obtained using RVIN. Then,
Gaussian noise is re-estimated, and its denoising is done
using BM3D. Finally, the inpainting concept is introduced to
further eliminate RVIN. In another study [27], the authors
proposed an autoencoder technology for pictures of any size
and type, RGB or GS. DVA (Denoising Vanilla Autoencoding)
has effectively smoothed Gaussian noise in damaged photos
using deep learning techniques. The DnCNN, NAFNET, and
Restormer algorithms can remove noise from images;
however, a DVA evaluation has been proven to suppress
noise to a better extent. In another study [28], the authors
proposed a composite multistable stochastic resonance
model. The effects of system settings on image noise
reduction are discussed, and the dynamic concept of the
model in signal identification is presented. An adaptive
compound multistable stochastic resonance system is
developed to process images and measure radar images
under various noise backgrounds, with model parameters
optimized using the whale optimization technique. This
model addresses the issue of a significant potential barrier
and easy saturation in the bistable model. In a study [29],
the authors proposed a model for simultaneous super-
resolution and blind additive white Gaussian noise (AWGN)
denoising by using netdeg and netSR components. The
proposed model relies on generating adversarial networks
to achieve detailed results while combining both static and
dynamic layer features to preserve feature diversity,
thereby reducing costs. The model outperforms all the
existing methods in the very complex task of concurrent SR
and AWGN denoising. The authors of a former study [30]
proposed Neighbor2Global, a novel self-supervised frame-
work with noise-level adaptation to remove Poisson-
Gaussian noise. Using a GAT-based picture creation stra-
tegy, this method solves its training pairs by bringing
roughly independent sub-sampled picture pairs from a
single noisy image. To efficiently preserve additional
texture features, the technique of additional training incor-
porates an improved reconstruction loss and a regulari-
zation term. The experiments demonstrate that our
Neighbor2Global performs better than existing techniques
in terms of efficiency, particularly for real image photos.

2.2. Frequency Domain

The authors of a study [31] aimed to reduce signal
uncertainty by achieving near-optimal sparse represen-
tations that utilize both local and non-local correlations of
picture content completely and independently. The
suggested technique selects different picture data adap-
tively to exploit both local and non-local correlations. The
picture data of interest is retrieved explicitly from
clustered rows of patch groups that have comparable
image contents, allowing for the exploitation of local
correlation. The proposed methodology outperforms
previous effective deep learning-based methods in terms
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of PSNR, SSIM, and visual quality, as indicated by
experimental results on picture denoising. One of the
efficient techniques used in image denoising, which
reduces additive Gaussian noise, is low-rank matrix
approximation (LRMA). LRMA performs poorly in the case
of eliminating Rician noise from MR images. A novel image
denoising method for the case of MR images using the
technique of nonlocal low-rank regularization and an
extended DoG filter has been proposed in a recent study
[32]. The approach enhances patch matching by using a
unique nonlocal self-similarity evaluation with a tight
frame. An extended DoG filter is applied to the nonlocal
low-rank regularization model to eliminate the Rician
noise without degrading the edge details. Experimental
results are presented to demonstrate that the proposed
approach can effectively suppress noise in MR images
while preserving more edges and fine details.

2.3. Sparse Models

In a study [33], the authors generalized past learning in
image processing and used it for image-denoising
processes. It introduces a new prior model named the
Group Sparsity Mixture Model (GSMM) for patch group-
based past learning, which can represent the sparsity
between image patch groups. The paper also introduces a
high-efficiency patch group-based image denoising model,
which outperforms other models, such as the Field of
Experts and the Gaussian Mixture Model. The better
version outperformed the state-of-the-art model-based
method, WNNM, by running much faster on average.
Denoising images is a crucial process in image processing,
where classical approaches, such as sparse representation
(SR), often incur performance bottlenecks and high
computational costs. Deep learning has been found to
possess outstanding capabilities for image denoising, and
thus, a sparse representation-based network (SRNet) has
been developed [34]. The network incorporates a convo-
lutional neural network into the sparse representation
scheme, with parameters learned through training.
Experimental results indicate that SRNet significantly
decreases time cost and enhances denoising performance.
In another study [35], the authors proposed a novel multi-
scale weighted group sparse coding model (MS-WGSC) for
image denoising, utilizing the nonlocal self-similarity (NSS)
property of natural images. This model uses multi-scale
NSS priors to construct patch groups, and an alternating
minimization method is proposed. Extensive experiments
demonstrate the model's competitiveness in terms of
quantitative metrics, such as PSNR and SSIM, as well as its
perceptual quality compared to state-of-the-art methods. In
a study [36], the authors introduced a nonlocal self-similar
block-based deep image denoising scheme called deep low-
rank prior (DLRP). The low-rank property of neighboring
NSS patches enables the modeling of a global objective
function (GOF) and decomposes it into two subproblems.
The deep denoiser is then integrated into the model-based
optimization method, which incorporates adaptive noise
level estimation, to solve the inverse problem. Stable
solutions and flexible and powerful capacity to achieve
denoising performance stand out as the leading features of
the DLRP method.
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2.4. Deep
Models

Deep learning has revolutionized the image denoising
problem over the past few years, making it possible to
develop models that can directly learn complex spatial
priors and noise models from the data. It is possible to
learn deep hierarchical representations with deep neural
networks automatically, and this significantly increases
performance, especially when facing challenging noise
conditions, compared to traditional filtering-based
techniques [37].

A residual dense neural network (RDUNet) for image
denoising has been proposed in a former study [38] based
on a densely connected hierarchical network. The model
uses convolutional layers, local residual learning, and
global residual learning to predict the residual noise of the
corrupted image. The algorithm is trained for additive
white Gaussian noise and uses a wide range of noise
levels. Numerous tests have been conducted using online
natural image datasets, and the performance is compe-
titive with that of state-of-the-art networks in the image
denoising problem. Additive Gaussian noise levels 10, 30,
and 50 are used for comparison. In grayscale images, the
gained SSIM values are 0.9297, 0.8193, and 0.7491, while
the PSNR values are 34.39 dB, 29.11 dB, and 26.99 dB.
The SSIM of the color images is 0.9600, 0.8961, and
0.8465, and the PSNR is 36.68 dB, 31.43 dB, and 29.12
dB. A deconvolution neural network-based image
denoising technique is also introduced [39]. A new method
to compute loss functions is proposed. The proposed
method is tested on the BSD68 and SET12 datasets. Based
on the experimental results, the denoising performance of
this method is compared to that of the denoising convo-
lutional neural network method. This algorithm's conver-
gence time is reduced by 120% with the same denoising
effect. In another study [40], the authors addressed the
issue of image denoising when pictures are distorted by
non-stationary noise. A deep CNN-based technique for
estimating a map of local, patch-wise, standard deviations
of noise (referred to as a “sigma-map”) was proposed. The
technique demonstrates performance up to 6 dB superior
in PSNR to contemporary CNN-based blind image
denoising techniques, and up to 0.5 dB superior to other
existing methods based on sigma-map estimation, which
utilize estimated sigma-maps for image denoising, offering
greater flexibility in use. Comparison with an ideal
situation shows that the difference in corresponding PSNR
values when using ground-truth sigma-map for denoising
is under 0.1-0.2 dB and does not exceed 0.6 dB for most
noise levels. In another study [41], the authors proposed
removing additive white Gaussian noise (AWGN) from
images using gradient information, multi-scale features,
and feature denoising through a novel deep blind Gaussian
denoising network. This network consists of two modules;
one generates an intermediate image whose gradient
combines the features obtained by the second module to
produce the final residual image. The denoising block in
the first module helps refine the intermediate image
features. By using gradient information from the denoised
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image and the multi-scale feature block in the second
module, the quality of the final denoised image is
enhanced. Experimental results show that the new
proposed approach surpasses several methods of blind
denoising, namely EPLL, BM3D, WNNM, DnCNN,
MemNet, BUIFD, Self2Self, and ComplexNet, obtaining up
to 2.4dB in PSNR, 0.07 in SSIM, and 0.03 in FOM index
compared with the second-best model, in the BSD68, Set5,
Set14, SunHays80, and Mangal09 image databases. To
overcome the disadvantages of the existing image-
denoising techniques, the authors of the study [42]
demonstrated a CNN model trained on images
contaminated with mixed Poisson and Gaussian noise. The
resultant trained CNN was provided as an open-source
Image plugin that surpasses the traditional fluorescence
microscopy denoising methods in SNR improvement and
real-time picture denoising within tens of milliseconds.
Compared to state-of-the-art fluorescence microscopy
denoising approaches, the approach achieves consistently
high performance (>8 dB) denoising in less time when
evaluated on external datasets.A novel method for
structure-preserving noise reduction for FIB-SEM has
been devised by the authors [43]. It can leverage the
simplicity of Gaussian filtering and locally adjust the
filtering to accommodate biological structures. To correct
for structural feature fluctuations across the volume
before subsequent filtering using a Gaussian function, it
employs Optical Flow (OF). The denoising technique
outperforms conventional Gaussian filtering, as
demonstrated both objectively and qualitatively using
datasets from various samples collected under diverse
conditions. The authors of the study [44] addressed some
of the challenges surrounding wind speed forecasting,
including minimizing data noise and selecting optimal
model inputs that reveal wind speed variability
characteristics. It begins with noise reduction in the wind
speed time series using a wavelet soft threshold denoising
technique. It determines the ideal model inputs based on
the maximum information coefficient calculated by
quantifying the correlations between the historical wind-
speed data and the predicted targets. A new truncated
Gaussian density network based on a convolutional
Transformer is created to explain variations in wind speed.
After the multi-scale data from convolutional layers are
weighted and used to extract temporal information by the
Transformer network through self-attention, several linked
layers map the outputs to the anticipated objectives. The
truncated Gaussian distribution explains the reason for
uncertainty in wind speed forecasts; it provides zero
probability for negative wind speeds and ensures non-
negativity. As a result, the forecasting model develops a
loss function based on this. The results for three datasets
demonstrate that the suggested method gives reliable
probabilistic and accurate deterministic forecasts of wind
speed. Hypothesis testing further verifies the efficiency of
this approach for both types of forecasting. A two-step
denoising technique called GMCM is proposed in another
study [45] to address issues, such as high temporal
resolution, wide dynamic range, and low power con-
sumption. The two steps consist of motion denoising and
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Gaussian denoising preprocessing as part of the GMCM
method. Adaptive threshold techniques, with a Gaussian
temporal distribution, are employed in the first step to
determine whether the event streams contain motion-
related information. The results demonstrate that
Gaussian denoising preprocessing enhances computational
performance while also successfully identifying the
presence of motion information within the event data
stream. On the DVSCLEAN dataset, the GMCM technique
achieves SNR scores of 37.22 and 26.79 at 50% and 100%
noise ratios, respectively, which represent state-of-the-art
performance. The authors of another study [46] proposed
a method for unsupervised learning in MRI denoising.
First, random noise and content encoders were utilized to
separate the noisy artifacts from the content information
in low-quality MRI images. Next, the KL divergence loss
was utilized for regularization of the noise distribution.
Finally, to enhance the realism of the produced denoised
images, an adversarial loss was incorporated into the
model. To ensure that the content information remains
coherent across noisy input and denoised output images,
we finally incorporated cycle consistency and perceptual
losses. The authors of a previous study [47] built a GAN-
based robust denoising network. To extract and learn the
features of the input picture, the global residual, which
consists of gradient dispersion and feature disappearance,
is added to the autoencoder in the generator network. The
mean and variance of noise for each generator node are
trained and optimized by an optimization algorithm (OA).
Its CIFAR-10 dataset exceeds 90% and 99% accuracy in
the MNIST dataset. Testing shows that the model's per-
formance in anti-interference has strengthened the
defense capabilities of project gradient descent (PGS) and
fast gradient sign method (FGSM) attacks by more than a
2% decrease in PSNR and SSIM values. The reliance of
brain MRI on CNN disese predictive models for brain
tumors and Alzheimer's Disease has also been assessed
[48]. The methodology incorporates pre-processing data,
stratified k-fold cross-validation, and training four CNN
models. The research contrasts the performance of
stringent experimentation on four versions of CNN across
two brain MRI image datasets, benchmarked by average
measures of accuracy, precision, recall, F1 score, and
AUC.

2.5. Transformer-based Model

Recently, transformer-based methods have become
practical tools for a range of image processing tasks, such
as reconstruction, restoration, segmentation, and denoising
images [49]. Transformers, initially designed for natural
language processing (NLP), have demonstrated significant
success in capturing contextual relationships and long-
range dependencies, both of which are crucial for com-
prehending complex visual structures.

In a study [50], the authors have presented a novel
Denoise Transformer for real-world image denoising,
utilizing Context-aware Denoise Transformer (CADT) units
and Secondary Noise Extractor (SNE) blocks. A dual-
branch structure can extract both global information and
local features, while a hierarchical network learns about
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the noise distribution. Experiments demonstrate compe-
titive performance, especially in cases of blurred textures
and low-light images, without requiring additional know-
ledge about the noise level or type. The researchers deve-
loped TRQ3DNet, a deep neural network that combines a
CNN with a transformer for HSI denoising [51]. This
includes two branches: one that utilizes 3D quasi-
recurrent blocks to extract spatial and spectral corre-
lations, and another that employs Uformer blocks to
explore both global and local spatial features. Superior
performance has been confirmed by experimental results,
which show an improvement of 0.8 in the PSNR value
compared to other methods. In a study [52], the authors
introduced a heterogeneous window Transformer
(HWformer) for denoising images, aiming to strike a
balance between distance modeling and denoising time
through global window designs that capture global context
information while enabling diversified information without
prolonging denoising time. HWformer applies a feed-
forward network to locally extract information from
adjacent patches, shortening denoising time by 30%.
Acute Bilirubin Encephalopathy (ABE) is a significant risk
factor for neonates, causing disability as well as mortality
at a high rate. To tackle this, a Tri-M2MT model is
suggested for accurate ABE detection from tri-modality
MRI scans [53]. The model incorporates a sophisticated
Gaussian Filter, Z-score normalization, a Snake
Optimization Algorithm, an Advanced Capsule Network, a
multi-transformer technique, and a SoftMax layer for the
diagnosis of ABE. The model's performance is evaluated
using various metrics, demonstrating improved per-
formance compared to other approaches.

Transformer-based models have shown impressive
performance in image denoising, especially in handling
Complex noise patterns, High-resolution images, and
Global structures and textures often missed by CNNs [54].

2.6. Diffusion Model

The authors have recognized and revisited the
diffusion model from a denoising perspective, in a study
[55], proposing a new approach called the Diffusion Model
for Image Denoising (DMID) that addresses this issue. The
DMID technique comprises an adaptive ensemble method
that minimizes distortion in the denoised image and an
adaptive embedding method that embeds the noisy image
within a pre-trained unconditional diffusion model. For
both Gaussian and real-world image denoising, the DMID
approach provides state-of-the-art performance on
distortion-based and perception-based criteria. The
authors of the study [56] have proposed a new
optimization scheme to remove the combination of
Gaussian and impulsive noise from images. The framework
is based on a non-convex PDE constraint with two
diffusion operators: a fractional order and a local Weickert
operator. Although the local and fractional operators
preserve the texture and boundaries of the image, the non-
convex norm is used to eliminate the impulse component.
This section reviews the theoretical characteristics of the
proposed PDE-constrained approach, followed by a
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discussion of some findings on well-posedness in the first
subsection. Proximal linearization with a Primal-Dual
approach is demonstrated, following the numerical finding
of a minimizer in the second part, which includes findings
on local convergence. In a study [57], the authors
proposed a framework for training single-image Denoising
diffusion models, named SinDDM. The architecture
employed a multi-scale diffusion process and a light-
weight, fully convolutional denoiser to produce high-
fidelity samples suitable for tasks, such as style transfer
and harmonization, and can be externally supervised. In a
study [58], the authors proposed the contextual
Conditional Diffusion model (CoCoDiff). This low-dose CT
denoising method utilizes a noise estimation network to
transform residual images into Gaussian distributions and
employs contextual information to mitigate structural
distortion. Experimental results demonstrate that the
model can recover structural details and generalize well
across different noise levels.

2.7. Hybrid Model

In a study [59], the authors combined an anisotropic
Gaussian filter (AGF), wavelet transform, and a deep
learning-based denoising convolutional neural network
(DnCNN) for removing additive Gaussian blur noise
(AGBN) from CT scan images. The first step in denoising is
to use an anisotropic Gaussian filter and Haar wavelet
transforms to remove AGBN from the image. DnCNN is

combined with AGF and wavelets for post-processing,
which offers the removal of residual noise. AGF was
chosen because it is adaptive to edge orientations and
hence does not blur in non-uniform noise. PSNR, MSE,
and SSIM are used to measure the denoising of images.
The average PSNR of the results was 28.28, and the
computational time was 0.01666 s. Thus, this reflected
that both the original image and the reconstructed version
had a small MSE and therefore proved an accurate
restoration. The values for SSIM range from 0 to 1.0,
where 1.0 represents a perfect match. Values of SSIM
close to 1.0 indicate the structural similarity between the
denoised CT image and the original. In a study [60], the
authors presented a hybrid method for removing noise
from digital images using wavelet transform and deep
learning techniques. This method decomposes noisy
images into their frequency components and then denoises
the approximation coefficients using a convolutional
neural network, reconstructing the final image. A hybrid
model has been shown to utilize wavelet transformations
to isolate and reduce noise across varying frequency
levels, incorporating a GAN structure to enhance image
details [61]. Experiments demonstrate that it outperforms
traditional denoising methods in terms of peak signal-to-
noise ratio and structural similarity index, making it a
suitable tool for practical image denoising applications.

Table 1 summarizes the comparison of different
denoising algorithms.

Table 1. Comparison of denoising algorithms.

Category

Key Methods

Advantages

Limitations

Application Domains

Current Trends

Classical filters

Gaussian, Median,
Wiener,
Anisotropic Diff.

Simple, fast, low
computational cost; no
training required

Poor performance on
textured/noisy regions;
cannot adapt to complex
noise patterns

General imaging, real-
time systems, and pre-
processing steps

Often combined with deep
learning (e.g., pre-processing
in CNN pipelines)

High computation; requires

variants

K-SVD, OMP, Good at preserving edges | ,. = . Natural images, medical |Less used standalone; now
. - dictionary training; . . i .
Sparse coding Dictionary and textures; . imaging, and hybridized with deep or self-
. ) performance drops with .
Learning interpretable A hyperspectral data supervised methods
complex noise
RObl{St PCA, Effective in handling Not suitable for highly MR, CT, video Incorporated in self-supervised
Matrix . . . . . .
Low-Rank models . structured noise and textured or local noise; denoising, dynamic frameworks or combined with
Completion, NLM . . . .
global patterns computationally expensive imaging transform methods

Transform-domain
methods

Wavelet, Curvelet,
BM3D, Shearlet,
DCT

Good frequency
separation; effective for
Gaussian noise; BM3D is
state-of-art

May introduce artifacts; fixed
transforms may not
generalize well; limited
adaptivity.

Remote sensing, MRI,
visible-infrared fusion

Still baseline for comparisons;
used in hybrid and learning-
based frameworks

Requires large training data;

Medical imaging,

Diffusion models

based models

implicit denoising during
the reverse process

mature for real-time medical
use

restoration, generative
tasks

CNN, U-Net, Highly adaptive; learns . e . Shift toward transformer-based
. . domain shift risk; can microscopy, . .
Deep learning ResNet, complex mappings; state- hallucinate or remove photography, low-dose and lightweight models; less
Transformer of-the-art performance relevant details CT/MRI reliance on labels
. . L . . Emerging in high- .
DDPM, Score- High-quality generation; |Very slow inference; not yet resolution image Gaining momentum for

unsupervised denoising and
inverse problems

GAN-based
techniques

DnGAN, Pix2Pix,
conditional GANs

Sharp outputs; learns
perceptual quality; good
for blind denoising

Training instability may
introduce fake details
(hallucination); it is hard to
evaluate objectively

CT, low-dose PET,
multimodal image
translation

Moving toward stabilized
variants (e.g., Wasserstein
GANSs), used in hybrid loss
setups.
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Input Image
Dataset

Add the noise to input
images by using different
Noise Variances

Saini et al.

Apply various denoising
algorithms

Best Denoising Algorithm

¥

Compare with the existing
14 techniques

¥

Performance Evaluation on
the basis of various metrics

Fig. (2). Workflow diagram.

Fig. (2) demonstrates the workflow diagram for
evaluating and identifying the best denoising algorithm for
multimodal medical images (MRI and HRCT). Firstly, noise
has been added to the input images at different noise
variances (0.01, 0.05, 0.09, and 0.50), and then various
existing denoising algorithms are applied to these images.
Then, the performance of the algorithms has been
measured on the basis of various evaluation metrics like
PSNR, SSIM, etc. Lastly, the best-performing algorithms
have been carried out.

3. MATERIAL AND METHODS
3.1. Input Dataset

3.1.1. MR Image

Based on the image characteristics, the present scan is
most likely to be identified as a T1-weighted MRI
sequence. The T1-weighted image also shows that the gray
substance of the brain is darker than the white substance,
and the cerebrospinal fluid within the ventricle also
appears dark. This sequence is mainly applied to high-
resolution anatomical imaging to produce clear boundary
demarcation between various structures of the brain and
is well employed in the architectural variability of the
human brain [62].

3.1.2. HRCT

According to the image characteristics, this scan is
probably a High-Resolution Computed Tomography
(HRCT) of the chest. In HRCT imaging, lung tissue is
imaged in a thin slice thickness of 1-2 mm, which enables
excellent depiction of lung structures and minimal paren-
chymal modifications. Its late phase is preferable for

evaluating lung diseases, as it provides excellent reso-
lution and contrast [62].

Fig. (3) demonstrates the dataset images. It shows two
images, MRI and HRCT.

3.2. Noise Variance

Noise variance is used to control the strength of noise
added to the dataset. The larger the value in the noise
variance parameter, the greater the noise that will be
spread across the image; otherwise, it would result in very
noisy images when using too low a value. One of the most
prominent experimental applications of this parameter is
noise level simulation, which is used to evaluate the
reliability of denoising techniques. Noise is typically added
to the medical imaging dataset to simulate real-world
conditions. For instance, when working with MRI images,
Gaussian noise (or Rician noise) is sometimes introduced
to simulate the inherent noise during acquisition. The
noise variance may also be measured as an image degra-
dation. The degradation caused by the noise can be
calculated by computing the variance of pixel intensity
both before and after adding the noise. As noise variance
increases, distinguishing between anatomical features and
noise becomes more difficult, significantly lowering
picture quality [58]. Noise variance is an important consi-
deration when creating or evaluating denoising algorithms
for MRI and HRCT. Generally, algorithms are tested
against images taken under various levels of noise to
ensure that they effectively handle real clinical noise. In
this experiment, two datasets, MRI and HRCT, are used,
and then different noise variances are applied to these
datasets. Four different noise variances are applied to
both datasets: 0.01, 0.05, 0.09, and 0.5.
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MRI Image(Datasetl)

HRCT Image(Dataset2)

Fig. (3). Dataset (MRI & HRCT image) [62].

0.01: This is the low-variance noise that indicates that
only a small amount of noise is being added to the
images. This, therefore, means that the quality of such
images is expected to be close to the original, with
minimal interference from noise.

e 0.05: This noise variance value is moderate, where the
noise in an image becomes easily visible and affects some
of the finer details in medical images.

e 0.09: At this value, the noise becomes visible, and the
quality of an image starts to degrade; all the important
features, such as edges or textures, start to blur or even
hide.

e 0.5: This value indicates an extremely high variance in

noise, in which noise significantly degrades the quality of

the images. Critical anatomical regions in MRI or HRCT
scans may become undetectable, making diagnosis and
interpretation very challenging.

3.3. Algorithms

3.3.1. Block-matching and 3D Filtering (BM3D)

BM3D is a collaborative filtering method that groups
similar image blocks, applies a 3D transform (such as a
wavelet or Fourier transform), and then proceeds with
denoising in the transform domain. The core idea lies in
the similarity of the patches within an image, allowing
them to be stacked in a 3D array and collaboratively
filtered. BM3D processes the image in two steps that
consist of an initial denoising followed by a refinement
step [63, 64].

3.3.2. Expected Patch Log Likelihood (EPLL)

This is based on a probabilistic model, where patches
from the noisy image are denoised by assuming that they
are drawn from a prior distribution. EPLL uses the
Gaussian Mixture Model (GMM) as a prior for image
patches and tries to find patches that maximize the likeli-

hood given the noisy image. The denoising is performed by
solving an optimization problem [65, 66].

3.3.3. Fields of Experts (FoE)

It is based on learning an energy model to capture the
statistical properties of the image using filter responses. It
uses high-order Markov Random Field (MRF) models,
where the denoising task is viewed as an energy mini-
mization problem. The filters used in FoE are learned from
data, and the model tries to minimize a loss function that
includes both the noisy data and prior knowledge about
clean images [67].

3.3.4. Weighted Nuclear
(WNNM)

It works by considering the low-rank properties of
image patches. It treats each noisy patch as a matrix and
applies nuclear norm minimization to restore the clean
patch. It differentiates weights assigned to singular values
in the nuclear norm minimization to enhance denoising
performance. The approach is successful in exploiting non-
local redundancy, especially in images, by relating similar
patches [68].

Norm Minimization

3.3.5. Bilateral Filtering

It is a simple non-linear filter that smooths an image
while preserving edges. The idea behind it is the
averaging of intensity values among neighboring pixels,
taking both spatial closeness and intensity similarity into
consideration for this process. This helps in reducing noise
while preserving edges [69, 70].

3.3.6. Guided Filtering

It is an edge-preserving filter, albeit more complex
than the simple spatial smoothing filters. It employs
another guidance image, which might as well be the noisy
input image, to compute the filter output. It assumes that
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the output image should be a linear transform of the
guidance image, and based on this assumption, it can
maintain sharp edges while smoothing out noise [71].

3.3.7. Non-Local Means (NLM)

It removes noise by replacing the value of each pixel
with the weighted average of similar patches from the
image. It searches for patches similar to the noisy patch
across the entire image, not just within a local neigh-
borhood, and computes the average based on their
similarity [72].

3.3.8. Denoising Convolutional Neural Network
(DnCNN)

It is a deep learning-based model that uses convo-
lutional neural networks to learn the noise distribution
and remove the noise. It shows good performance at both
low and high noise levels. It attempts to preserve
structural information, which involves maintaining high
SSIM scores. It learns automatically from noisy patterns of
a complex nature, which requires large datasets for
training [73].

3.4. Role of Denoising Algorithms

3.4.1. Feature Preservation

The diagnostic integrity of denoised images in medical
imaging is dependent on retaining minor features. Minor
yet significant features of an image, termed fine feature
details, include subtle textures, edges, and contrast
changes. These elements are often crucial markers of
pathological disorders. These details are of extreme
importance in anomaly detection, such as early-stage
cancers, microcalcifications, or small vascular changes on
MRI and HRCT scans. Denoising must not suppress the
very important characteristics while removing the noise.
Minor features usually describe the early signs of disease.
In the case of identifying neurological diseases in MRI, the
edges of brain structures or microvascular networks are
essential. Lung parenchymal texture alterations can be a
sign of interstitial lung disorders. During denoising,
excessive smoothing can eliminate important gradients
and contrasts, leading to misinterpretation of anatomical
boundaries. All fine details are retained to ensure accurate
size and shape evaluations of small lesions, thereby
facilitating early detection and prompt action.

3.4.2. Challenges for Maintaining Fine Features

Aggressive denoising can remove noise, but at the
same time drowns high-frequency information containing
fine features. It is often challenging to distinguish between
noise and real features in medical imaging because noise
frequently overlaps or mimics the frequency spectrum of
small details. Therefore, algorithms must be sensitive
enough to preserve characteristics such as micro-
calcifications, often drowned by noise. By decomposing
images into their frequency components, methods like
wavelet-based denoising are effective at selectively
removing noise in high-frequency regions while preserving
low-frequency components that contain fine details. To
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keep textures and edges, BM3D wuses collaborative
filtering and groups patches that are related. This method
works very well to remove noise and preserve small
details. DnCNN uses large datasets to learn complex noise
patterns and separate them from fine details. Due to its
ability to maintain fine details easily, it particularly excels
at edge information preservation. To preserve edge
information, the bilateral filter weights the pixel inten-
sities on the basis of both spatial closeness and intensity
similarity. The SSIM, the edge preservation index, and
zoomed-in ROI can be used to assess the detail pre-
servation [74, 75].

3.4.3. Homogeneous and Heterogeneous Regions

In medical imaging, regions can be classified as homo-
geneous or heterogeneous based on the uniformity of their
structure, texture, and intensity. The way these regions
are treated in image denoising directly affects the clinical
interpretation and retention of diagnostic features. In
medical images, homogeneous regions are those whose
pixel intensities are relatively constant and change little.
These regions typically correspond to anatomical
structures or tissues that have constant properties, such
as solid bone structures, fat, or large regions of healthy
soft tissue in MRI images, healthy lung parenchyma, air-
filled regions, or solid bone structures in HRCT images.
Noise distortion and the risk of over-smoothing are the
challenges in denoising homogeneous regions. Hetero-
geneous regions exhibit noticeable differences in intensity,
texture, or structure. They often correspond to diseased
regions, such as tumors, lesions, or inflammatory areas,
disrupting normal tissue homogeneity, as well as complex
anatomical structures, including blood vessels, organ
boundaries, or tangled brain networks. Preserving details
and avoiding noise overlap make denoising heterogeneous
regions challenging. For example, the boundary between
gray and white matter in a brain MRI is heterogeneous.
The noising must preserve this boundary to ensure that
denoising accurately reconstructs anatomy [76, 77].

3.4.4. Small and Large Structure

Medical pictures range from small lesions and fine
networks of arteries to gigantic organs and bones, filled
with various-sized features. This is what the structures are
intended to preserve during denoising: the diagnostic and
therapeutic value of the images. Important information
about pathological situations can be organized into
therapies or tracked as a disease course within small and
large structures. Several issues involve noise overlap,
blurring, and loss of information with denoising tiny
structures. Such large structures in medical imaging
involve organs, large bones, or big pathological features
like tumors or fractures. These structures appear to act as
anatomical markers and often occupy a sizeable portion of
the image. Boundary preservation, contrast reduction,
edge retention, and global form preservation are some of
the challenges in denoising large structures (Table 2) [78,
791.
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Table 2. Hyperparameter and implementation detail
of denoising algorithms.

Algorithm Hyperparameter
* Patch size: 8x8
BM3D  Search window: 39x39

» Hard-thresholding followed by Wiener filtering
steps as per standard settings.

* Patch size: 8x8
EPLL * Dictionary size: 1024 atoms
* K-SVD Thresholding
» Filter size: 3x3, 5x5
FoE * Number of Filters: 8,24
* Patch size: 15x15
* Patch size: 6x6, 7x7, 8x8, 9x9
* Search window: 35-60
* No. of Non-Local Similar Patches K =8-14
* Adaptive rank estimation and weighted nuclear
norm minimization.

* Patch size: 8x8

* Spatial sigma: 3, range sigma: 50,

* Kernel size: 5.

¢ Window Radius(r)= 7

+£=0.01

* Patch size: 7x7

* Search window: 21x21

* h-parameter (filter strength) set empirically based
on noise level.

* Batch size: 32

* Learning Rate: le-4

* Optimizer: ADAM

* Activation Function: ReLU

WNNM

Bilateral Filter

Guided Filter

NLM (Non-
Local Means)

DnCNN

4. RESULTS AND DISCUSSION
4.1. Performance Metrics

4.1.1. Entropy

Entropy measures the information or randomness in an
image [80]. The entropy H of a probability distribution is
calculated using the Eq. (1):

H= —; p()log,p(i) 1)

Where p(i) represents the probability of the i-th
outcome, and +n is the total number of outcomes.

4.1.2. Peak Signal-to-noise Ratio (PSNR)

It gives the ratio of the maximum possible power of the
signal to the power of noise corrupting it using the Eq. (2)

(811
MAX2>

(2)

PSNR =10"- lOglo <ﬁ

Where MAX is the maximum possible pixel value of the
image, and MSE is the Mean Squared Error.

4.1.3. Mean Squared Error (MSE)

It is defined as the average squared difference
between the corresponding pixel values of the image and
its denoised version as presented in the Eq. (3).

M N
1
MSEz—ZZI','—K',' 2 3
MN 2. 2 UGN (D) ()
=1 j=1
Where I(ij) is the pixel value at position (ij) in the
original image, K(ij) is the pixel value at position (i,j) in the
denoised image, and M and N are the dimensions of the
image.
4.1.4. Structural Similarity Index (SSIM)

It measures the structural similarity of two images
(Eq. 4) [82].

Qupg + €)oo + C3)

SSIM(1,K) =
(i +ug + C)(0f + of + Cy)

1C))

i, and p are the Mean intensities of the original and
denoised images, 0,2 and o2 are the variances of the
original and denoised images, 0, is the covariance
between the original and denoised images, and C, and C,
are the stabilizing constants to avoid division by zero.

4.1.5. Natural Image Quality Evaluator (NIQE)

It is a no-reference metric based on natural scene
statistics [83].

NIQE(D = |lu— wl| + Tr(EC+3i- 2(EX0™) )

Where u, > are the mean and covariance matrix of
natural image statistics, 1;,>; are the mean and covariance
of the test image's statistics (Eq. 5).

4.1.6. Blind / Referenceless Image Spatial Quality
Evaluator (BRISQUE)

It quantifies image quality based on natural scene
statistics (Eq. 6) [84].

BRISQUE(I) =wT f(I) ®)

where f{(I) is the feature vector of the test image derived
from normalized luminance coefficients, and w is the
weights obtained during model training.

4.1.7. Perception-based Image Quality Evaluator
(PIQE)

It computes image quality by evaluating perceptual
distortions (Eq. 7) [85].

N
PIQE(I) = %Z d(i) )
i=1

Where N is the number of image patches, d(i) is the
distortion score of the i-th patch based on block-level noise
and blur.

Fig. (4) shows the results at a noise variance of 0.01,
where it has been observed that all algorithms produce
clear images, except for the Guided algorithm.

Fig. (5) shows the results at a noise variance of 0.05,
where it has been observed that the BM3D, EPLL, and
WNNM algorithms produce clearer images compared to
other algorithms. NLM and DnCNN also perform well, but
not as well as the above-mentioned three algorithms.
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BM3D BM3D
EPLL EPLL
FoE FoE
WNNM WNNM
Bilateral Bilateral
Guided Guided
NLM NLM
DnCNN DnCNN
Fig. (4). The output of different algorithms at a noise variance of Fig. (5). The output of different algorithms at a noise variance of

0.01. 0.05.
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Fig. (6) shows the results at a noise variance of 0.09,
where it is observed that the BM3D, EPLL, and WNNM
algorithms produce clearer images compared to other
algorithms. Another algorithm, DnCNN, also performs well,
but not so well as the above-mentioned three algorithms.

Fig. (6). The output of different algorithms at noise variance

0.09.

BM3D

EPLL

FoE

WNNM

Bilateral

Guided

NLM

DnCNN

Fig. (7) shows the results at a noise variance of 0.5,
where it has been observed that all the algorithms produce
blurred images, except for the BM3D algorithm. However,
the results of the BM3D algorithm are not so satisfactory.
As a result, it has been observed that at a noise variance of
0.5, none of the algorithms performed well.

BM3D

EPLL

FoE

WNNM

Bilateral

Guided

DnCNN

5
45

1
ks
s Nkl

Fig. (7). The output of different algorithms at Noise Variance
0.50.
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Table 3. Performance of denoising algorithms at various noise levels for dataset 1.

Algorithms Noise Variance (NV) Entropy PSNR MSE SSIM NIQE BRISQUE PIQE

0.01 6.50 35.72 17.44 0.48 5.20 36.74 57.01

0.05 6.53 31.10 50.45 0.36 5.59 27.53 49.32

BM3D 0.09 6.53 29.38 75.04 0.31 5.74 26.98 46.77

0.50 6.57 24.18 24850 0.18 5.97 27.52 44.78

0.01 6.34 32.06 52.88 0.44 7.65 23.50 50.68

Pl 0.05 6.43 26.08 272.65 0.30 10.30 35.02 53.42

0.09 6.44 23.98 512.32 0.24 10.83 43.45 58.80

0.50 6.19 1822 | 264252 0.10 33.71 43.46 70.93

0.01 6.99 25.28 206.06 0.21 12.78 43.01 64.14

o 0.05 7.22 1645 | 1583.62 0.07 19.88 48.43 74.74

0.09 7.24 13.85 | 2936.89 0.04 24.99 4517 78.09

0.50 6.82 865 | 1054827 | 001 69.14 43.46 85.00

0.01 6.15 16.98 58.30 0.36 6.21 24.74 55.31

NN 0.05 6.29 23.25 296.70 0.22 7.00 32.91 54.90

0.09 6.06 23.06 386.19 0.25 6.96 32.16 60.30

0.50 6.44 3016 | 2461.04 0.06 24.54 4351 74.00

0.01 6.81 30.11 76.17 0.35 6.79 40.93 25.64

, 0.05 7.00 23.91 376.38 0.21 8.74 42.60 20.67
Bilateral

0.09 7.06 21.83 682.93 0.16 9.10 43.19 18.74

0.50 717 1660 | 3071.97 0.07 12.80 4343 19.80

0.01 6.58 29.98 78.03 0.44 7.84 49.36 56.39

Cuided 0.05 6.71 25.60 292.96 0.31 8.28 50.44 45.95

uide 0.09 6.75 23.82 525.91 0.26 8.69 49.54 42.60

0.50 6.62 1856 | 2566.24 0.13 9.50 44.46 34.01

0.01 6.33 30.64 64.61 0.33 9.77 39.14 53.71

LM 0.05 6.49 24.94 284.49 0.19 10.99 43.42 62.22

0.09 6.51 23.20 495.67 0.15 12.19 43.46 65.91

0.50 6.40 1823 | 2438.70 0.07 47.04 43.46 76.40

0.01 6.46 31.27 60.75 0.39 415 10.18 36.57

NN 0.05 6.63 25.60 285.06 0.25 479 19.60 37.40

0.09 6.69 2348 538.33 0.20 5.99 20.89 39.31

0.50 6.88 17.00 | 2891.19 0.06 38.74 4349 61.55

Table 3 presents the performance of several denoising
algorithms for dataset 1, where different denoising
techniques are applied at varying noise variances. The
performance is evaluated using metrics like Entropy,
PSNR, MSE, SSIM, NIQE, BRISQUE, and PIQE. BM3D has
demonstrated excellent performance at low noise, with a
PSNR of 25.45 and a very low MSE of 185.44 at N.V =
0.01. It means that BM3D is capable of removing noise
while preserving structural details. However, as the N.V.
increases to 0.5, the efficiency of BM3D deteriorates, as
the PSNR decreases to 19.02 and the MSE increases to
813.15. The structural similarity, as measured by SSIM, is
relatively high at 0.54 but falls to 0.17 under high noise,
demonstrating its reduced ability to preserve fine details
under noisy conditions. Perceptual quality results from
BM3D demonstrate consistent performance, with NIQE
values ranging between 5.16 and 6.10 and BRISQUE
scores ranging from 13.90 to 10.78. PIQE also
demonstrates good perceptual quality retention, with
scores ranging from 39.99 to 38.15, which makes BM3D
one of the more robust denoising methods. EPLL performs
well at low noise levels, reporting a PSNR value of 25.25

and MSE of 195.46 at N.V = 0.01. However, at high noise
levels, the performance drops sharply, with PSNR
reaching a value of 14.09 and MSE peaking at 2619.92,
while N.V = 0.5. Structural preservation is equally
affected, as evidenced by a steep decline in SSIM from the
value of 0.52 at low noise levels to 0.06 at high noise
levels. This reflects a significant loss of structural details,
especially at high noise levels. Perceptual quality metrics
follow a similar trend, with NIQE growing to 66.36 and
PIQE growing to 65.30 at N.V = 0.5, thereby exhibiting a
significant degradation in visual quality. FoE fares poorly
under all noise levels. Even at low noise (N.V = 0.01), it
reports a relatively low PSNR of 23.19 and a high MSE of
312.81. In contrast, at high noise (N.V = 0.5), the PSNR
drops to 8.07, and the MSE soars to 10,245.80. SSIM
remains consistently low, failing to preserve structural
details at all noise levels. The perceived quality is also not
very satisfactory for NIQE and BRISQUE, peaking at 80.40
and 85.27, respectively, for N.V = 0.5, which signifies the
poorest visual quality in comparison with all testing
algorithms. WNNM performs well at low noise with a
PSNR value of 22.72, MSE of 187.96, and SSIM of 0.63 at
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N.V = 0.01. However, its capacity to tolerate higher noise
is very low, and at N.V = 0.5, the MSE becomes 2415.21,
and the SSIM drops to 0.15. The perceptual quality is also
reduced in the presence of high-level noise as NIQE
increases to 43.60, BRISQUE to 44.37, and PIQE becomes
73.72. These metrics indicate that WNNM is quite efficient
at moderate noise levels but fails to tolerate high noise
levels. Bilateral filtering performs reasonably well at low
noise, with a PSNR of 23.49 and an MSE of 291.99 at N.V
= 0.01. Nevertheless, it was observed to have limited
efficacy when the noise levels were substantially higher,
as the PSNR value decreased to 14.05 and the MSE
increased to 2659.48 at N.V = 0.5. The SSIM reduces from
0.51 to 0.17, indicating that edge and detail preservation
decrease with an increase in noise levels. While perceptual
metrics like PIQE remain stable (27.71 to 25.04), a high
NIQE value (up to 14.30 at N.V = 0.5) indicates visible
image degradation under extreme noise levels. Guided
filtering does not perform well in terms of structural
preservation. SSIM values start at 0.22 at N.V = 0.01 and
gradually drop to 0.11 at N.V = 0.5. The PSNR is also
relatively low, at 20.51 when N.V is 0.01, and fails to
increase significantly with increasing levels of noise. High
MSE numbers suggest that it does not significantly reduce
noise. Perceptual metrics, such as PIQE scores, improve
slightly from 70.60 to 43.25, but still indicate overall poor
quality, particularly at higher noise levels. NLM achieves
average performance at low noise, with a PSNR of 24.31
and MSE of 241.84 at N.V = 0.01. However, its perfor-
mance degrades drastically at higher noise levels, where
the PSNR falls to 14.41 and the MSE increases to 2429.23
for N.V = 0.5. SSIM is practically negligible at all noise
levels, reaching only 0.10 at high noise levels, which
signifies a severe loss of structural information. Perceptual
metrics, for example, NIQE (60.52 at N.V = 0.5), also
indicate significant quality losses. DnCNN exhibits
excellent performance at low noise, with a PSNR value of
25.37, an MSE of 189.80, and an SSIM of 0.56 at N.V =
0.01. It is similar to other algorithms; however, its perfor-
mance degrades at higher noise levels, with the PSNR
dropping to 14.26, the MSE rising to 2530.92, and the
SSIM reducing to 0.16 at N.V = 0.5. DnCNN exhibits
better perceptual quality compared to the rest; it
maintains relatively stable values for NIQE, BRISQUE, and
PIQE even at high noise levels.

Table 4 presents the performance of several denoising
algorithms for dataset 2, where different denoising
techniques are applied at varying noise variances. The
performance is evaluated using metrics like Entropy,
PSNR, MSE, SSIM, NIQE, BRISQUE, and PIQE. BM3D
exhibits promising performance even at very low noise
levels. It reduces the white noise, achieving a PSNR of
25.45 and an MSE of 185.44 at an N.V. of 0.01, while the
SSIM is 0.54, which reveals the structural content of the
image. However, it tapers off when the noise levels are
higher, as the PSNR decreases to 19.02 and the MSE
becomes high at 813.15 at N.V = 0.5. This indicates that
BM3D is less effective when the noise is more severe.
Structural similarity, as defined by SSIM, reduces

dramatically to 0.17, indicating a loss of finer image
details under increased noise. Despite this, BM3D
achieves relatively good perceptual quality at all noise
levels, as confirmed by NIQE scores ranging from 5.16 to
6.10 and BRISQUE scores decreasing from 13.90 to 10.78.
The PIQE values varied from 39.99 to 38.15, indicating an
essentially constant perceived quality within the consi-
dered interval of high noise levels. Under low noise, EPLL
also exhibits good performance, with a PSNR of 25.25 and
an MSE of 19546 for N.V = 0.01. However, with
increased noise, its effectiveness greatly decreases. At N.V
= 0.5, the PSNR decreased to 14.09 while the MSE
increased to 2619.92, indicating significant difficulties in
noise suppression. Structural preservation also suffers, as
the value of SSIM drops sharply from 0.52 at low noise to
0.06 at high noise. This implies that EPLL fails to maintain
image details as noise levels increase. Perceptual quality
degenerates significantly at higher values of noise since
NIQE shoots up to 66.36, and PIQE increases by 65.30.
These values show that EPLL cannot afford to retain its
acceptable image quality when the noise variance is high.
FoE seriously underperforms compared to other
algorithms; PSNR values are relatively low, and MSE
values are high on all considered noise levels. Even at a
low noise level, N.V = 0.01, it achieves only a PSNR of
23.19 with an MSE of 312.81, indicating minimal
denoising. More importantly, performance degrades
further at higher noise levels (N.V = 0.5), wherein PSNR
drops to 8.07 and MSE shoots to 10245.80, thus rendering
it the worst of all tested algorithms. SSIM values remain
low at all noise level settings, indicating poor structural
preservation. The perceptual quality metrics also yield the
same results as above, with NIQE and BRISQUE peaking
at scores of 80.40 and 85.27, respectively, for N.V = 0.5,
indicating that the quality is inferior. WNNM performs
well at low noise variance, achieving a PSNR of 22.72,
MSE of 187.96, and SSIM of 0.63 at N.V = 0.01. However,
its performance degrades as the noise gain increases. At
N.V = 0.5, MSE increases to 2415.21, and SSIM decreases
to 0.15. It fails to preserve structural details effectively in
high-noise conditions. Perceptual quality metrics, such as
NIQE and BRISQUE, remain low at high noise levels but
degrade severely at higher noise levels. NIQE reaches
43.60 while BRISQUE attains 44.37. PIQE attains 73.72,
signifying poor perceived quality when the noise level is
high. Bilateral filtering exhibits limited denoising per-
formance at low noise levels, but it is capable of achieving
a PSNR of 23.49 and an MSE of 291.99 at N.V = 0.01. Its
performance degrades with increases in variance, up to a
low PSNR of 14.05 and a high MSE of 2659.48 at N.V =
0.5. The SSIM is at 0.51 for low noise and reduces to 0.17
for high noise, which signifies diminished edge and detail
preservation. Perceptual metrics, involving PIQE values,
are fairly stable in the range of 27.71 to 25.04, indicating
moderate-quality preservation. However, high NIQE
values at N.V = 0.5 and 14.30 indicate a visible loss in
quality perception. Guided filtering performs poorly in
terms of the preservation of structure, as shown in low
SSIM scores. At N.V = 0.01, the SSIM is 0.22 and
degrades even further to 0.11 at N.V = 0.5. The PSNR is
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equally low, at only 20.51 at N.V = 0.01, and high MSE
values are recorded at all noise levels, indicating that
limited noise suppression capability is also achieved.
Perceptual quality is not equally well maintained, with
PIQE starting at 70.60 and improving modestly to 43.25,
suggesting that Guided Filtering does not provide an
effective fit for denoising. At low noise variance, NLM
offers acceptable denoising performance, reporting a
PSNR of 24.31 and an MSE of 241.84 at N.V = 0.01.
Beyond this point, the algorithm's effectiveness signi-
ficantly declines with the rise in variance, and the PSNR
value decreases to 14.41, while the MSE reaches 2429.23
at N.V = 0.5. The SSIM is consistently poor, with values of
0.10 at high noise levels, indicating a loss of structural
information. The perceptual metrics, such as NIQE and
BRISQUE, degrade severely for high noise values, with
NIQE attaining a value of 60.52 at N.V = 0.5, indicating
significantly degraded perceptual image quality. The
DnCNN is also effective at low noise levels, achieving a
PSNR of 25.37 dB, an MSE of 189.80, and a SSIM of 0.56
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at N.V = 0.01, which is similar to other methods; however,
it degrades for higher noise values. At N.V = 0.5, PSNR
drops to 14.26, MSE increases to 2530.92, and SSIM falls
to 0.16. Although it is dropping, DnCNN still maintains a
relatively better perceptual quality than other algorithms,
with stable NIQE, BRISQUE, and PIQE values even in
scenarios of high noise. Therefore, it demonstrates the
great capability of DnCNN in achieving superior visual
quality, distinguishing this algorithm as a competitive
choice for medical image denoising.

It has been observed that, except for the Guided Filter,
which was unable to preserve edge details successfully,
most algorithms presented visually clear and good results
at low noise levels (variance = 0.01). Techniques such as
BM3D, EPLL, and WNNM consistently produced better
quality and detail preservation than others in terms of
their visual quality and detail preservation at medium
noise levels (variance = 0.05 and 0.09). Although their
performances were commendable, those of NLM and
DnCNN were slightly less accurate and reliable.

Table 4. Performance of denoising algorithms at various noise levels for dataset 2.

Algorithms NV (Noise Variance) Entropy PSNR (dB) MSE | SSIM | NIQE | BRISQUE | PIQE
0.01 7.14 25.45 18544 | 054 | 516 | 13.90 |39.99
0.05 713 22.67 35177 | 032 | 413 | 11.87 |35.70
BM3D 0.09 7.21 21.80 430.02 | 028 | 484 | 1037 |36.10
0.50 7.56 19.02 813.15 | 0.17 | 6.10 | 1078 | 38.15
0.01 7.14 25.25 19546 | 052 | 461 | 194 |30.76
0.05 6.71 21.76 44302 | 029 | 830 | 3230 |4544
EPLL 0.09 6.75 20.15 64657 | 023 | 10.06 | 42.74 | 48.23
0.50 6.62 14.09 2619.92 | 0.06 | 66.36 | 4346 |65.30
0.01 7.70 23.19 312.81 | 0.60 | 12.66 | 40.60 |64.15
roE 0.05 7.88 15.55 1824.00 | 029 | 27.19| 5008 |76.32
© 0.09 7.78 13.11 3196.34 | 020 |31.12| 56.09 |7827
0.50 7.00 8.07 10245.80| 0.07 | 80.40 | 43.46 |8527
0.01 7.33 22.72 187.96 | 0.63 | 496 | 30.60 |51.65
0.05 6.99 26.76 48353 | 038 | 842 | 3091 |4858
WNNM
0.09 6.49 27.34 55723 | 028 | 474 | 1356 | 44.13
0.50 7.19 33.69 241521 | 0.15 | 43.60 | 4437 |73.72
0.01 7.34 23.49 20199 | 051 | 842 | 3929 |27.71
, 0.05 7.51 20.96 532.50 | 0.39 | 9.65 | 4128 |22.64
Bilateral
0.09 7.58 19.31 780.48 | 033 | 10.07 | 42.83 | 21.62
0.50 7.52 14.05 2659.48 | 0.17 | 1430 | 4338 | 25.04
0.01 717 20,51 579.96 | 022 | 7.24 | 4831 |70.60
, 0.05 7.22 19.67 71144 | 020 | 814 | 4754 |63.77
Guided 0.09 7.23 18.90 861.92 | 0.19 | 854 | 4693 | 5853
0.50 7.05 14.75 227392 | 0.11 | 8.98 | 4523 |43.25
0.01 6.97 2431 24184 | 045 | 824 | 3255 |47.41
0.05 6.87 21.50 47141 | 031 | 1022 | 42.83 |62.59
NEM 0.09 6.93 19.85 691.07 | 025 | 19.55 | 4344 |66.08
0.50 6.87 14.41 242923 | 0.10 | 60.52 | 4346 |75.69
0.01 7.19 25.37 189.80 | 0.56 | 4.05 | 2416 | 35.86
0.05 7.07 22.06 416.07 | 038 | 620 | 2393 |39.63
DnCNN
0.09 7.10 20.30 627.83 | 032 | 7.69 | 27.64 | 3881
0.50 7.31 14.26 253092 | 0.16 | 60.90 | 43.78 | 64.93
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Table 5. Execution time comparison of denoising algorithms.
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Algorithm Processor | Tool Used | Image Size Image Format Avezzgso?:&rsl;lme

BM3D Ryzen 3 MATLAB 256 x 256 Jpg 1.2
DnCNN Ryzen 3 MATLAB 256 x 256 Jpg 2.0
Guided Filter Ryzen 3 MATLAB 256 x 256 Jjpg 2.3
Bilateral Filter Ryzen 3 MATLAB 256 x 256 Jpg 2.7
NLM Ryzen 3 MATLAB 256 x 256 Jpg 4.5
WNNM Ryzen 3 MATLAB 256 x 256 Jpg 5.0
FoE Ryzen 3 MATLAB 256 x 256 Jjpg 5.5
EPLL Ryzen 3 MATLAB 256 x 256 Jpg 6.0

All the algorithms performed poorly at the high-noise level
(variance = 0.5), producing significantly distorted and
degraded images. At this level of noise, even BM3D, which
had demonstrated relative robustness, could not produce
outputs appropriate for diagnosis. This result highlights
the limitations of current denoising methods in high-noise
or low-SNR conditions that are common in low-dose or
accelerated medical imaging scenarios.

Table 5 presents a comparison of the execution times
for denoising algorithms. A computer equipped with an
AMD Ryzen 3 processor and 8 GB of RAM was used to
experiment with the execution times of various image
denoising algorithms on input images with a pixel size of
256 x 256. With a denoising time of approximately 1.2
seconds, BM3D recorded the fastest execution among all
the methods examined. Its moderate computational comp-
lexity, owing to block-matching and collaborative filtering
approaches, is accountable for its performance. Due to
this, BM3D is perfect for real-time processing on mid-
range hardware and time-critical applications. The median
runtime for the deep learning-based method DnCNN was
2.0 seconds. While it exhibits a low complexity at
inference time, it provides a trade-off between speed and
denoising quality while running on a CPU, suggesting its
feasibility for real-world applications even without GPU
acceleration. Only 2.3 seconds were required for the
Guided Filter, which was slightly slower than DnCNN and
reflected a low to moderate complexity due to its non-
linear, intensity-weighted calculations. While it features
edge-aware smoothing with a relatively small compu-
tational burden, the longer execution time is attributed to
the repeated filtering operations that occur during the
process. Due to its intensity-based weight and nonlinear
nature, which add to the computation, the Bilateral Filter
required 2.7 seconds.

Runtimes were larger for more complex methods. In its
high-complexity mode, NLM takes 4.5 seconds, as it
involves large-scale patch-based comparisons over the
entire image, which is a computationally and memory-
intensive process. Likewise, the runtimes for WNNM,
which uses Singular Value Decomposition (SVD) to
estimate low-rank matrices, were 5.0 seconds. With
runtimes of 5.5 seconds and 6.0 seconds, respectively,
both are considered very high in complexity. Statistical
model-based methods, such as EPLL and FoE, were the

slowest. Their long processing times are partly caused by
EPLL's patch-based inference using iterative Gaussian
Mixture Models and FoE's energy minimization approach.
Though EPLL and FoE can offer more advanced modeling,
their computational demands limit their usage to offline or
high-performance computing. BM3D is the most compu-
tationally lightweight method. This comparison highlights
the trade-offs between runtime performance and denoising
accuracy, emphasizing the importance of selecting an
algorithm based on the specific operation or clinical
requirements.

Fig. (8) illustrates the performance (in terms of
running time, measured in seconds) of eight different
image denoising algorithms under identical experimental
settings. To ensure efficient comparison, every method
was evaluated against an image of the same size with the
same noise level. The x-axis shows the various denoising
algorithms: BM3D, DnCNN, Guided Filter, Bilateral Filter,
NLM, WNNM, FoE, and EPLL. The execution time is pre-
sented on the y-axis in seconds. BM3D is the most efficient
algorithm, with a fast execution time of 1.2 seconds,
thereby improving its effectiveness and performance
balance. Since it utilizes GPU-accelerated inference and
lacks an iterative stage, DnCNN performs well (2.0 s)
despite being a deep learning model. The Guided Filter
(2.3 s) and Bilateral Filter (2.7 s) have reasonable
runtimes. The NLM (4.5 s) and WNNM (5.0 s) are slower
because they depend on patch similarity search and matrix
operations, respectively. The FoE (5.5 s) and EPLL (6.0 s)
are the longest due to their complex optimization
structures and statistical prior modeling.

In this study, the evaluation of denoising algorithms
was carried out by:

e Visual Analysis.
e Objective Analysis.
e Ablation Study.

4.2, Visual Analysis

Visual analysis of the usual MRI and HRCT images is
used to examine the qualitative performance of each
denoising algorithm. Special attention was paid to ana-
tomically relevant sites, such as fine pulmonary textures in
HRCT and gray-white matter boundaries in T1-weighted
brain MRI.
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Fig. (8). Run-time evaluation of different denoising algorithms.

The visual quality of the denoised images was determined
on cropped and zoomed regions of interest (ROIs). The
capability of the algorithms to minimize noise while pre-
serving the most essential features, such as tumor borders,
ventricular boundaries, or alveolar boundaries, was tested.
Such an analysis is crucial, especially in medical imaging,
where even slight degradation or excessive smoothing may
obscure diagnostic clues. Perceived quality and artifact
suppression are illuminated by visual comparisons, and
quantitative measurements are corroborated.

4.3. Objective Analysis

An objective analysis of the Structural Similarity Index
(SSIM), one of the standard methods for measuring image
quality, and the Peak Signal-to-Noise Ratio (PSNR),
conducted in conjunction with image inspection, is
performed. These metrics numerically analyse the degree of
structural faithfulness and noise suppression in comparison
with the ground truth. Whereas SSIM determines the
similarity between two images based on their structure,
contrast, and brightness, PSNR measures the signal-to-
noise ratio. To compare performance at low and extreme
noise levels, we tested each denoising algorithm with a
range of simulated noise levels (e.g., 0.01, 0.05, 0.09, 0.5).
These results indicated that in low-noise scenarios, classical
methods, such as BM3D, outperformed those based on deep
learning, such as DnCNN. However, in moderate and high-
noise environments, the latter techniques consistently
outperformed the former in terms of both WM and PSNR.

4.4. Ablation Study

We conducted an ablation study, replacing or removing
significant parts to understand the role each part plays
within the denoising framework. The impacts of batch
normalization, residual learning, and depth were investi-
gated in deep learning methods, such as DnCNN. Take, for
example, the removal of leftover connections, which led to
both slower convergence speed and visible blurring,
proving their great importance in maintaining edge acuity.
We tested various patch sizes, search windows, and
threshold parameters of standard methods, such as BM3D,
to investigate how they influenced performance. The
ablation findings demonstrated that the balance between
noise suppression aggressiveness and the retention of
small structural details in medical images is sensitive, and
the choices of architecture and parameterization in each
technique are justified.

4.5. Limitations of Various Denoising Algorithms

Despite significant advances in medical image de-
noising, every algorithmic category possesses inherent
limitations that affect generalizability and real-world
utility. Though computationally fast, traditional filters
(e.g., Gaussian, median, bilateral) tend to cause blurring
and cannot maintain small anatomical structures,
especially in high-noise scenarios. Sparse coding methods
are susceptible to parameter tuning and rely on learned
dictionaries or patch priors, which may not generalize
effectively across different anatomical structures or
disease-specific textures. For applications in diverse sites,
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such as tumors or lesions, the premise of low-rank models'
global or non-local redundancy may not be compelling,
leading to structural loss or inadequate noise reduction.
While transform-domain methods are powerful in iden-
tifying multi-scale features, they can result in errors when
anatomical structures are not well represented at different
scales or when coefficients are over-thresholded. Even
with their power, deep-learning-based denoisers often act
as “black boxes” with no interpretability, a key issue in
clinical decision-making. Their strong performance can be
undermined by overfitting some noise models and their
typical need for massive annotated datasets, which are
often unavailable in specialty domains (e.g., pediatric
imaging). Even though diffusion and GAN-based models
produce excellent results, they are computationally inten-
sive and can create hallucination features, which is
undesirable in a diagnostic environment. Even though self-
supervised and cross-modal denoising methods reduce the
demand for clean ground truth, they can fail in cases of
excessive noise or sparse data. Finally, although pro-
mising, multi-tasking and GNN-based frameworks are still
in their early stages and often lack standardization, which
limits their clinical integration and repeatability.

The denoising methods used have robust performance
on benchmark measures and synthetic noise conditions.
However, the use of Gaussian noise modeling, a limited
dataset, a focus on technical measures without diagnostic
evaluation, and untuned generalization across different
organs, scanners, or disease states limit the significance
and external generalizability of their findings. Extension of
these studies into the future will overcome these
limitations by incorporating mixed noise models, domain
adaptation, and clinical usability evaluation.

4.6. Clinical Limitations

4.6.1. Loss of Diagnostic Detail

Many denoising techniques can inadvertently smooth
or obscure fine structural details, such as microcalci-
fications, vascular boundaries, or subtle tumor margins,
resulting in false segmentation or a loss of diagnostic
accuracy.

4.6.2. Artifacts

Artificial textures or anatomical abnormalities could be
introduced with patch-based and deep learning methods,
potentially deceiving radiologists or computer-aided
diagnostic (CAD) systems.

4.6.3. Issues of Generalizability

The application of algorithms developed or optimized
for specific scanners, procedures, or noise environments is
potentially constrained by their limited generalizability
across institutions or patient populations.

4.7. Clinical Impact After Denoising

To demonstrate the clinical importance of denoising, a
comparison is made between noisy and denoised sagittal
T1-weighted MRI images. The noisy image may be difficult
to diagnose due to its grainy texture and low contrast of

tissue structures, as significant structures, such as the
brain stem, thalamus, and corpus callosum, are obscured.
These make a lot more sense post-denosing, enabling the
assessment of subcortical integrity, the inspection of
ventricular pathways, and the secure differentiation of
gray and white matter. These improvements are not
limited to visual interpretation; their direct application to
early detection and treatment planning of diseases such as
hydrocephalus, multiple sclerosis, and brain tumors firmly
places them within the medical field.

To highlight the clinical significance of denoising, a
comparison is performed of the visual and anatomical
enhancements visible in high-resolution chest CT images.
In the initial HRCT model with noise, the clarity of the
bronchial walls, pulmonary vessels, and interstitial
markings was greatly affected by high-frequency noise,
which is important for the identification of certain lung
diseases, such as fibrosis, bronchiectasis, or pulmonary
infections. Following the denoising process, restored soft
tissue contrast and improved visualization of segmental
bronchi, vascular branches, and pleural boundaries were
observed in the resulting image. Such improvements have
a direct impact on the confidence of radiologists, the
predictability of lesions, and the probable reduction of
false diagnoses. Accordingly, technical validation using
PSNR and SSIM was achieved, while the clinical
advantage of the denoising procedure was demonstrated
by the preservation of diagnostically important structures
crucial for accurate thoracic interpretation.

4.8. Clinical Relevance of Image Denoising

It is also crucial to acknowledge the clinical utility of
denoising in real-world medical imaging applications.
However, our research mainly evaluates denoising
algorithms based on technical measures, such as PSNR
and SSIM. Noisy images may obscure diseased features or
minute anatomical details in medical practice, thereby
increasing the likelihood of false discoveries or diagnostic
errors. Effective denoising, for instance, is essential for
preserving the delicate information of lung parenchyma in
low-dose HRCT, where noise levels are amplified to reduce
radiation dosage. This enables the detection of pulmonary
nodules or early interstitial lung disease [86]. Similarly,
denoising increases gray-white contrast in MRI, which is
critical for the visibility of small lesions, tumors, or
neurodegenerative changes at an early stage. Therefore,
image denoising not only enhances aesthetic quality but
also improves diagnostic accuracy and radiologist
confidence.

4.9. Failure Cases and Performance Degradation
Scenarios

Although the evaluated algorithms generally perform
well under moderate noise conditions, several failure
cases were observed at high noise levels. For example,
BM3D performed poorly when applied to images with a
high Gaussian noise variance (0.50). In such cases, the
patch-matching stage of the algorithm is hindered by the
excessive noise, leading to over-smoothing and pro-
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nounced artifacts (Fig. 7). The PSNR of dataset 1
decreased by 13.70 dB between noise variances 0.01 and
0.50, while that of dataset 2 decreased by 6.43 dB.
Although WNNM performed well in preserving edges, it
struggled with homogeneous regions and often introduced
patchy textures and low-frequency artifacts when the
visual signals in the image were insufficient for low-rank
approximation. DnCNN’s performance dropped by nearly
20 dB in PSNR on dataset 1 and by 10 dB on dataset 2,
particularly under high noise variance (0.50).

4.10. Data Privacy Concern

To secure the personally identifiable health information
(PHI) of patients during collection, storage, processing, and
sharing, the clinical and healthcare sectors must implement
strict security and governance measures. To block
unauthorized access or break-ins, adherence to regulations,
such as HIPAA, GDPR, or national health data privacy
regulations, is required. This ensures data security through
encryption, access control, and audit trails. To ensure the
confidentiality of patient data and to further enable the
training of the model, the privacy of data regulations in Al-
based apps imply that medical data (e.g., removing patient
information by removing DICOM header names) should be
de-identified or anonymized, and only ethically gathered
data with informed consent may be used. It also refers to
the threats posed by membership inference or model
inversion attacks, which can reveal sensitive personal
information. To secure the privacy of data and maintain
trust in healthcare Al systems, privacy-preserving
techniques, such as federated learning or the use of
differential privacy, are required [87].

Safe computing and data privacy have become vital
issues in the application of deep learning and image
processing techniques in recent years, particularly in the
medical sector, regarding the security of patient data.
Although the study focuses on denoising methods, the
questions related to the processing and location of
sensitive imaging data are raised by its implementation in
healthcare in the future. To resolve this problem, new
frameworks, such as differential privacy and federated
learning, offer promising directions. Such methods lessen
the likelihood of a breach of privacy by making a central
training or inference impossible, as raw medical images
are not transferred directly to the server [88].

Another area where decentralized and privacy-
preserving recommendation systems hold promise is their
application to medical data. The key idea is that user data
can be stored locally on a scanner or hospital network to
execute denoising models without sending raw data to a
third party. Implementing privacy-preserving machine
learning is essential for the safe and scalable clinical
adoption of denoising frameworks in the future.

Fig. (9) shows comparative denoising results of brain
MRI scans processed with eight various denoising
methods. A region of interest (ROI) in the brain paren-
chyma is indicated with a red box in each full sagittal MRI
scan image. To assess edge preservation and structural
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sharpness after denoising, the included zoomed-in patch
(inset) enables close inspection of delicate anatomical
details, such as ventricles, cortical folds, and grey-white
matter interfaces. The zoomed patch is among the
cleanest of BM3D, as it has preserved contrast and fine
edges. There is a slight blurring of structural edges. EPLL
also shows good detail preservation. Compared to BM3D,
edges are smoother but still sharp. The noise suppression
is well-balanced. WNNM and EPLL show similar results.
While relatively smooth with some slight reduction of
delicate textures, there is good edge retention. While
visually appealing and clear, DnCNN appears too soft in
the zoomed area. Texture loss is minimal compared to
BM3D and WNNM. Compared to EPLL or WNNM, FoE
provides acceptable performance but slightly worse edge
detail preservation. NLM's averaging process, under
residual noise, is most likely responsible for its minor
patchiness and over-smoothing in higher-detail regions.
Some edges are maintained through edge-aware
smoothness in the Bilateral Filter, but fragile textures are
significantly smoothed down. The result appears slightly
blurry. In the magnified region, the Guided Filter retains
the least level of fine detail. Boundaries are less defined,
and textures seem washed out compared to others. BM3D,
EPLL, and WNNM achieve the best trade-off between
denoising and edge/pixel detail preservation, as indicated
by the visual clarity of the zoomed area. In this regard,
DnCNN and FoE yield decent results, whereas guided and
bilateral filters perform worse.

Fig. (10) contrasts the denoising results of eight
different denoising techniques on high-resolution computed
tomography (HRCT) lung images. A red rectangle marks a
specific region of interest (ROI) within the lung parenchyma
in each full HRCT scan image. Venous blood, bronchioles,
and soft tissue interfaces are just a few of the small
structural features that are retained, as can be appreciated
in the inset zoomed-in patch. With excellent edge retention
and smooth, sharp textures in the magnified region, BM3D
performs outstandingly. There is minimal loss of anatomical
detail, as evident in the outstanding clarity of fragile
vascular structures. With slight smoothing and carefully
preserved textures, EPLL is similarly excellent. In
comparison to BM3D, the structure is sharp but possesses
slightly reduced contrast. WNNM is a strong rival to BM3D
and EPLL because it effectively preserves details while
maintaining vessel boundaries with minimal smoothing.
While FoE also performs well, it slightly over-smooths the
zoomed patch, which makes fine details less crisp.
Compared to more traditional methods, such as BM3D or
WNNM, DnCNN strikes a good compromise between
denoising and texture preservation; however, the image
appears slightly oversmoothed. Due to its averaging in
patches, NLM exhibits mild blurring in thinner lung
structures, which can result in a loss of sharpness in the
zoomed-in view. Compared to other methods, bilateral and
guided filters have less detail preservation. Particularly in
narrow airways and at the borders of arteries, the
magnified regions appear mushy, losing sharp edges and
contrast.
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Fig. (10). Denoised HRCT images with highlighted regions of interest.
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For medical use where the distinctness of small lung
structures is critical, BM3D, EPLL, and WNNM have
better denoising with anatomical preservation on HRCT
images. Though with slight texture loss, DnCNN is
competitive.

4.10.1. Algorithm

As seen in Fig. (11), significant anatomical features
may be obscured by the extensive smoothing that EPLL
applies when denoising images with high noise levels. Fine
textures, such as the delicate lines separating different
brain regions, become less clear. Subtle features become
harder to observe as boundaries and sharp transitions in
certain brain areas lose their distinctness. The algorithm’s
tendency to remove high-frequency components, often
mistaken for noise, can lead to the loss of intricate
structures within brain tissue. Although EPLL is an
effective noise reduction technique, it suffers from high
computational complexity, over-smoothing of important
regions, and loss of minute details. These limitations
restrict its applicability in clinical imaging, particularly in
MRI, where accurate diagnosis depends on preserving fine
structural features.

Fig. (12) shows the HRCT image at a noise variance of
0.09 while applying the Bilateral denoising algorithm. Bone
outlines become less distinct due to the blurring of the
abrupt transitions at the rib, vertebral, and bronchial wall
borders. Edge deterioration occurs because the algorithm is
unable to distinguish between high-frequency components
that are noise-induced and those that are part of actual
anatomical structures. As bones and airways become less
distinct, it becomes more challenging to identify fractures,
calcifications, or blockages in the airways. The image may
still appear visually appealing overall, but its clinical utility
is limited, as essential diagnostic elements are lost.
Although bilateral filtering is effective in reducing noise, it
struggles to preserve important edges and can oversmooth
delicate anatomical textures, particularly when the noise
level is high.

Fig. (11). Zoomed MRI image result at noise variance 0.09 with
EPLL denoising algorithm.

Fig. (12). Zoomed HRCT image result at noise variance 0.09 with
bilateral denoising algorithm.

CONCLUSION AND FUTURE SCOPE

In this study, the performance of denoising algorithms
in MRI and HRCT images is examined under various noise
conditions, with a particular focus on how they behave
under different noise variations (0.01, 0.05, 0.09, and 0.5).
At low to moderate noise levels, BM3D consistently
demonstrated good performance, achieving the highest
PSNR values and SSIM, while producing images of better
perceived quality. Due to its reliability, BM3D is a viable
option for environments where anatomy and structure
need to be preserved. However, this shows that even at
relatively high noise levels (0.5), BM3D fails. Both WNNM
and EPLL performed well at low to moderate noise levels;
however, they experienced severe difficulties at high noise
levels, as indicated by higher MSE and lower SSIM.
Although they excel at maintaining uniform areas and
delicate textures, their computational complexity makes
them challenging to utilize in real-time clinical settings.
However, with the help of deep learning's advantages,
DnCNN surpassed conventional algorithms in preserving
structural and diagnostic qualities at medium noise levels,
while showing competitive performance at lower noise
levels. Greater variation in noise, however, negatively
affected its performance, meaning that additional
modifications of the deep learning-based approach are
inevitable for high noise levels. FoE and guided filtering
performed worse than other methods, particularly in terms
of structural integrity and perceptual quality, making them
less suitable for medical imaging tasks that require a high
level of diagnostic precision. Similarly, NLM, despite its
simplicity, could not achieve an optimal trade-off between
preserving small and intricate structures and reducing
noise. At a noise variance of 0.5, none of the methods were
evaluated satisfactorily, highlighting a common challenge
in medical imaging: denoising in extremely noisy settings
without compromising relevant diagnostic information.
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BM3D shows competitive results in low to moderate noise
levels but underperforms at high noise intensities. To
address the limitations observed in high-noise scenarios,
this study emphasizes the need for further investigation
into advanced denoising techniques, particularly those
utilizing hybrid schemes. New techniques, such as
explainable Al frameworks, self-supervised denoising, and
diffusion models, can potentially enhance both inter-
pretability and performance. Future research incor-
porating these approaches can lead to denoising systems
that are clinically reliable, resilient, and generalizable,
ultimately resulting in more accurate and reliable medical
diagnoses. Future work can focus on developing context-
aware or adaptive algorithms. Future work can also focus
on covering mixed and modality-specific noise models
(e.g., Poisson, Rician) to evaluate the generality and
stability of the method on different imaging conditions.

Additionally, testing on cases of interest for specific
organs and diseases will help verify the diagnostic rele-
vance of the denoising performance in real-world appli-
cations. Specifically, in the case of medical imaging,
unsupervised and self-supervised learning methods have
great potential to reduce dependency on pure ground-
truth data. Additionally, integrating denoising pipelines
with radiomics, quantitative image analysis, and clinical
decision support systems can enhance diagnostic accuracy
and repeatability. Another emerging trend is the appli-
cation of privacy-protection measures, like decentralized
training architectures and federated learning, to enable
collaborative model development without compromising
patient confidentiality. Overall, perhaps the most signi-
ficant barrier—and opportunity—for additional research in
medical image denoising is narrowing the gap between
algorithmic performance and therapeutic effect.
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