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Abstract:

Introduction: Differentiating brain tumors through neuroimaging is challenging due to overlapping radiological
features, requiring advanced techniques and clinical correlation for accurate diagnosis. The aim of this retrospective
observational monocentric study is to determine the diagnostic performance of combining perfusion-weighted
imaging (PWI), diffusion-weighted imaging (DWI), and magnetic resonance spectroscopy (MRS) for MRI-based
differential diagnosis of the three major classes of adult malignant intra-axial brain tumors. Principal component
analysis (PCA) is applied to identify relevant imaging features, with the goal of supporting preoperative diagnosis
beyond conventional MRI alone.

Methods: We selected 72 adult patients who underwent MRI examination, including DWI, PWI, and MRS imaging
before surgery, for suspected malignant intra-axial expansive lesions (namely glioblastoma, metastasis, or primary
non-Hodgkin lymphoma). The definitive histological diagnosis was obtained on post-operative specimens. Quantitative
variables derived from DWI, PWI, and MRS acquisition were identified and processed using principal component
analysis. The differences between groups for the most relevant parameters identified by PCA were then tested by the
Kruskal-Wallis test.

Results: Finally, a total of 11 specimens of non-Hodgkin lymphomas, 18 specimens of single metastases, and 43
specimens of wild-type glioblastomas were gathered. CBF, CBV, MTT, ADC, and lipid-lactate (Lip-Lac) at MRS were
found to be the most relevant variables for differential diagnostic purposes through PCA analysis. In particular, ADC
and Lip-Lac were more strongly associated with differentiating lymphoma from the other two disease classes, while
CBF, CBV, and MTT contributed more to differentiating glioblastoma from metastasis.

Discussion: In this study, ADC and Lip-Lac differentiated CNS lymphoma, while CBV, CBF, and MTT distinguished
GBM from metastases, supporting PCA’s clinical value beyond diagnostic workflows.

Conclusion: The combined use of PWI, DWI, and MRS can assist the radiologist in accurate preoperative differential
diagnosis of the three main classes of adult malignant intra-axial brain neoplasms, enhancing diagnostic performance
beyond that of conventional MRI alone.
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1. INTRODUCTION

The actual global age-standardized incidence of prim-
ary malignant brain tumors is about 3.5 per 100,000 per
year for males and 2.6 per 100,000 per year for females.
These rates are higher in Western countries, probably due
to differences in life expectancy and access to advanced
diagnostic technologies compared to less developed
countries. The most common types of malignant brain
tumors vary significantly by age group, with high-grade
gliomas, brain metastases, and central nervous system
(CNS) lymphomas being the most frequent histological
types in adults. Although CNS tumors are relatively rare in
adults, they are a significant cause of reduced life quality,
functional limitation of daily activities, and life shortening
[1-3].

Continuous advancements in diagnostic technologies
and imaging tools are progressively improving the identi-
fication of brain tumors. Magnetic resonance imaging
(MRI) remains the most important technique for this
purpose, offering an optimal balance between tissue char-
acterization and anatomical details, thus playing a crucial
role from the initial clinical evaluation to the monitoring of
tumor recurrence in patients diagnosed with brain tumors
[4, 5]. Due to MRI, radiologists are now responsible for
providing not only morphological data on tumor structure
but also functional information, such as tumor vascu-
larization, metabolite concentrations, cellular density, and
white matter fiber integrity. This detailed characterization
of pathological tissue often enables preliminary tumor
type classification even before surgical intervention and
histopathological examination, thereby contributing to
early diagnosis and improved patient management [5].
However, modern radiologists must address the challenge
of managing the increasing volume and complexity of data
generated by a single MRI examination, and of integrating
this information to support the most accurate and com-
prehensive diagnosis possible.

The same considerations apply to MRI data used for
computational analysis on large datasets. As the number
of extracted features increases, the volume of data
required to achieve statistically significant results also
grows. This can lead to reduced diagnostic accuracy due
to dimensionality problems, specifically when multiple and
multiparametric MRI sequences are used, as the number
of possible combinations of imaging features becomes
extremely large. Evaluating and simplifying the complexity
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in imaging data is particularly critical in the context of Al-
based technologies applied to cancer detection [6, 7]. To
address this problem, preliminary feature selection can be
employed to reduce dimensionality while preserving as
much imaging information as possible. Among dimen-
sionality reduction procedures, one of the most adopted
techniques is principal component analysis (PCA) [8],
generally used in machine learning and artificial neural
networks [9, 10], but potentially applicable also to other
frameworks [11, 12].

We hypothesized that using a PCA-based statistical
approach could help reduce data redundancy and assist
radiologists in prioritizing MRI features with the greatest
diagnostic value for distinguishing among the three main
types of adult malignant intra-axial brain tumors. Building
on this premise, the goal of the study is to evaluate the
diagnostic performance of combining diffusion-weighted
imaging (DWI), perfusion-weighted imaging (PWI), and
magnetic resonance spectroscopy (MRS) for MRI-based
differential diagnosis. PCA is applied to identify which
parameters from these sequences are most informative in
this specific clinical context. Ultimately, this approach may
contribute to more efficient imaging protocols and support
clinical decision-making by enhancing the interpretation of
multiparametric MRI in a statistically robust manner.

2. MATERIALS AND METHODS

In this retrospective, observational, monocentric study,
we analyzed MRI data of patients referred to the emer-
gency department of “Sant’Anna e San Sebastiano”
Hospital, Caserta, for headache or focal neurological
symptoms between 2018 and 2020, who underwent brain
computed tomography and were found to have a positive
result for a suspected malignant brain expansive lesion.
These patients subsequently underwent brain MRI exami-
nation for pre-surgical lesion identification and charac-
terization, including DWI, PWI, and MRS sequences.
Patients who refused MRI and those whose MRI was
affected by motion or device-related artifacts were
excluded from the analysis. The same exclusion criteria
applied to patients who refused surgery or brain biopsy,
patients with tumefactive lesions other than brain tumors,
and patients with no or inconclusive pathological exami-
nation results. Other exclusion criteria were previous
brain surgery or panencephalic radiotherapy. All patients
underwent a standard contrast-enhanced MRI examination
on the same 1.5T scan unit (Philips Ingenia, Philips, Best,
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The Netherlands) using the same 16-channel head coil.
Concerning the three above-mentioned sequences, the
acquisition parameters were set as follows:

e Spin-echo echo-planar axial DWI sequence, including two
b-values (b=0, b=1000 s/mm’), with corresponding
apparent diffusion coefficient (ADC) map reconstruction;

e Echo planar axial dynamic susceptibility contrast (DSC)
MR PWI during a 5 ml gadolinium-based contrast media
bolus at a rate of 5 ml/sec, followed by a 20 ml saline
flush. According to recent recommendations, DSC
acquisition was preceded by 5 ml gadolinium-based
contrast media and 20 ml saline flush administration to
pre-saturate brain tissue and reduce T1 contamination in
DSC imaging. Manual region of interest (ROI) placement
was performed by two neuroradiologists in consensus on
the solid enhancing portion of the tumor on post-contrast
3D Tlw images, and such defined ROI was then
transferred on color maps (i.e. cerebral blood flow (CBF),
cerebral blood volume (CBV), mean transit time (MTT),
and time to peak (TTP) maps); relative values were then
computed on the local workstation by an experienced
neuroradiologist;

e MRS with single-voxel technique (intermediate
TE=144ms, TR=3sec, TM=14ms), with 1.5x1.5x1.5 voxel
and slice-selection gradient strength of 0.15G/cm; voxel
was positioned on volumetric pre-contrast images (both
T2w and T1w, depending on the single case). Metabolite
spectra with corresponding ratios were computed on the
local workstation by an experienced neuroradiologist.

Histological diagnosis was obtained on post-operative
specimens by an experienced neuropathologist, who finally
identified 11 cases of non-Hodgkin lymphoma (NHL), 18
cases of single brain metastasis (MET), and 43 cases of
wild-type glioblastoma (GBM).

MRI DICOM data from each examination were
anonymized and locally stored. Quantitative variables
derived from DWI, PWI, and MRS acquisitions encom-
passed: ADC values from the DWI sequence; CBV, CBF,
MTT, and TTP values within the specific ROI from the DSC
PWI acquisition; metabolite peaks, such as lipid-lactates
(Lip-Lac), N-acetylaspartate (NAA), choline (Cho), and
creatine (Cr), with their ratios from MRS acquisition. To
minimize information loss, the above-mentioned quanti-
tative variables derived from DWI, PWI, and MRS acqui-
sitions were analyzed and plotted using CA [13]. PCA was
performed for dimensionality reduction and exploratory
data analysis, as it transforms a set of possibly correlated

variables into a smaller set of uncorrelated variables
called principal components (PCs). These components are
linear combinations of the original variables and are
ordered so that the first component captures the maxi-
mum possible variance in the data, the second captures
the maximum remaining variance orthogonal to the first,
and so on. Before PCA, variables were standardized by
calculating their means and standard deviations, and then
applying the standardization formula z = (x—pu)/o. To
determine how many PC to retain, a scree plot graph was
obtained. To determine whether the differences among the
three groups (NHL, GBM, and MET) were significant, the
Kruskal-Wallis test was used. Finally, for relevant para-
meters, between-groups differences (NHL vs. GBM, GBM
vs. MET, and MET vs. NHL) were tested using the
Wilcoxon signed-rank test. An original p-value of less than
0.01 was set, followed by Bonferroni correction to adjust
for multiple comparisons. For all analyses, a final signi-
ficance level of p = 0.0011 (Bonferroni-corrected) was
established. Statistical analyses were performed using the
XLStat package v.2019. An example of an MRI of the three
malignant brain lesions included in the analysis is shown
in Fig. (1). Demographic data and the prevalence of final
histological diagnoses in our sample are summarized in
Table 1.

3. RESULTS

We collected homogeneous and complete MRI data of
72 adult patients (M:F 45:27; mean age+SD 59,6%+12,4).
At histological examination, lesions were classified into 11
NHL, 18 MET, and 43 wild-type GBM; concerning single
brain metastases, 9 originated from lung cancer (8 adeno-
carcinoma and 1 microcitoma), 4 from breast cancer, 2
from upper digestive system neoplasm, 2 from bladder
cancer, and 1 from skin melanoma. Despite the different
pathological origins, due to the relatively limited sample
size, metastases were analyzed as a single group. The
unbalanced distribution of the sample in this study reflects
the actual prevalence of the disease subtypes in the
general population [2, 3]. Rather than artificially balancing
the groups, which could introduce bias or reduce eco-
logical validity, we opted to preserve the natural pro-
portions to enhance the clinical applicability of the
findings; this approach ensures that the proposed model
remains grounded in real-world conditions, thereby im-
proving generalizability and relevance to everyday diag-
nostic and treatment decisions. No statistical difference
concerning demographics was observed in the three
subgroups.

Table 1. Patients’ data summary. Patients’ demographical data and pathological diagnoses prevalence.

- Patients (n) Prevalence (%) M:F Age+SD
Total 72 100% 45:27 59.6+12.4
Wild-Type Glioblastoma 43 59.7% 28:15 62%15.5
Non-Hodgkin Lymphoma 11 15.3% 6:5 58.4+11.8
Single Brain Metastasis 18 25% 11:7 61.3£12.6
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Fig. (1). Example of conventional MRI findings in the three most common adult brain tumor types. Three examples of
conventional MRI findings in non-Hodgkin lymphoma (first row), single brain metastasis (second row), and wild-type glioblastoma (third
row): A) FLAIR imaging; B) post-contrast T1w imaging; C) b-1000 DWI and D) relative ADC map; E) CBV map from DSC-PWI, with ROI
placement (white continuous line); F) MRS metabolite spectrum (TE=144 ms).

To define which were the most informative parameters
among the ones obtained in DWI, PWI, and MRS, the
statistical procedure of PCA was used to summarize the
information content of these variables and identify among
them a smaller set of informative indices that could be
more easily visualized and analyzed. PC-1 captures the
maximum possible variance in the data (29.1%), and PC-2
captures the maximum remaining variance orthogonal to
the first (18.8%). The scree plots graph showed the
eigenvalues (A) in ascending order (A indicate how much of
the total variance in the data is captured by each PC;
higher A means that the corresponding PC accounts for a
greater portion of the variability in the dataset); the point
where the curve starts to flatten (PC;) indicates the
optimal number of components considered. A summary of
PCA results is shown in Fig. (2), while the scree plot graph
is shown in Fig. (3); A, variance, and cumulative variance
of PC parameters deriving from PCA are listed in Table 2.
By interpreting each PC and examining the magnitude and
direction of the coefficients, it was found that PC-1 has a
large association with DWI-derived ADC values, as well as
with CBF and CBV PWI-derived parameters, while PC-2
has a large association with MTT from PWI and Lip-Lac
ratio from MRS. Kruskal-Wallis test was used to confirm

such evidence and compute p-values, confirming signi-
ficant results for ADC (p=2.7e-06), Lip-Lac (p=4.4e-07),
CBV (p=2.5e-08), CBF (p=1e-10), and MTT (p=>5.6e-05).
Therefore, the identified parameters were considered for
further analysis. Indeed, when comparing the impact of
each MRI-derived metric identified at PCA in the three
groups (NHL, GBM, and MET) by means of the Wilcoxon
signed-rank test (Bonferroni corrected), we obtained
significant results for:

e ADC in differentiating NHL and the other two groups of
lesions (p=9.6e-07 for GBM and p=3.4e-05 for MET,
respectively);

e Lip-Lac in differentiating NHL from the other two groups
of lesions (p=1.1e-06 for GBM and p=2.4e-07 for MET,
respectively);

e CBF in differentiating GBM from the other two groups of
lesions (p=6.8e-11 for NHL and p=4.4e-10 for MET,
respectively);

e CBV in differentiating GBM from the other two groups of
lesions (p=6.8e-11 for NHL and p=2.0e-05 for MET,
respectively);

e MTT in differentiating GBM from the other two groups of
lesions (p=0.00051 for NHL and p=0.0006 for ME,
respectively).
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Table 2. Eigenvalues, percentage of variance, and cumulative variance of PC parameter deriving from PCA. A is
used as abbreviation for eigenvalue; variance and cumulative variance are expressed as percentages (%).

Fig. (2). PCA factor map. Factor map of the PCA performed on the 3 different pathological groups (NHL, GBM, and MET, respectively)
and the 9 considered MRI-derived quantitative variables (namely: ADC, CBV, CBF, MTT, TTP, Lip-Lac, Cho-NAA, Cho-Cr, and NAA-Cr).
Points represent observations (that are close to each other on the map are similar in their underlying variable patterns), with different
colors representing the 3 different pathological groups (blue for NHL, red for GBM and green for MET); ellipses represent 68% confidence
intervals of core regions; arrows (vectors) show the contribution of each original variable to the components, with arrows’ directions
representing the correlation between variable-principal component and arrows’ length representing the magnitude of the correlation.
PC-1 (x-axis) and PC-2 (y-axis) correspond to the first and second principal components, respectively, accounting for the highest and
second-highest variance in the dataset. Variables pointing in similar directions are positively correlated, while those pointing in opposite

directions are negatively correlated.
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Fig. (3). Scree plot from PCA analysis. The scree plot displays the number of the principal component versus their corresponding

eigenvalue, as well as the cumulative variance (%) explained.

A similar trend was also observed for CBF and CBV in
differentiating between MET and NHL (p=0.00073 and
p=0.0056, respectively). No significant result was
observed for ADC and Lip-Lac in differentiating between
GBM and MET (p=0.42 and p=0.022, respectively) and for
MTT in differentiating between NHL and MET (p=0.72).

A summary of Kruskal-Wallis test and Wilcoxon signed-
rank test results concerning significant parameters iden-
tified at PCA, coupled to boxplot and data dispersion
representation, is shown in Fig. (4). Conversely, Kruskal-
Wallis results concerning non-significant parameters
identified at PCA are reported as Supplementary Material.

4. DISCUSSION

PCA is a reliable statistical technique that can enhance
the diagnostic value of MRI by identifying the most rele-
vant imaging parameters in complex clinical datasets.
When numerous MRI sequences and quantitative metrics
are collected during imaging acquisition, PCA reduces
dimensionality while preserving the variance that best
represents the underlying data structure and highlights
patterns that may not be immediately apparent, thus iden-
tifying which MRI parameters contribute most to distin-
guishing different nosological entities. PCA is commonly
adopted in neuroimaging studies in contexts involving
large-scale data, such as radiomics or deep learning,
where high-dimensional feature sets are extracted from
MRI scans [14-17]. For example, in recent times, Akbari et
al. demonstrated that PCA of DSC MRI could effectively
quantify tumor microenvironment acidity in glioblastoma
[10]. In contrast, Gaikwad et al. reported that combining
PCA with a probabilistic neural network enabled accurate
classification of brain tumors based on imaging data [18].
By contrast, PCA is less commonly applied to the more

limited sets of quantitative parameters typically derived
from conventional MRI sequences in standard neuro-
oncological protocols, such as ADC values from DWI, CBV
from PWI, or metabolite ratios from MRS; these datasets
usually include only a handful of well-characterized
variables, making dimensionality reduction seem less
urgent. Even in such cases, PCA can reveal latent
patterns, reduce variable correlation, and identify key
diagnostic parameters, especially when multiple quanti-
tative sequences are combined. Despite its routine use in
Al-based workflows, its limited adoption in clinical
practice may be a missed opportunity to improve diag-
nostic accuracy and streamline interpretation.

With this background, we hypothesize that PCA applied
to data from DWI, DSC-PWI, and single-voxel MRS MRI
images of patients with suspected brain tumors may help to
identify the most informative imaging-derived parameters
to assist the radiologist in accurately predicting brain tumor
type before pathological examination. CBF, CBV, MTT, ADC
, and Lip-Lac at MRS were found to be the most relevant
MRI-derived indices for differential diagnostic purposes in
brain tumor allocation; in particular, ADC and Lip-Lac
contributed more to the differentiation of NHL from the
other two disease classes, while MTT, CBF , and CBV
contributed more to the differentiation of GBM from MET.
Some recent studies provided the evidence that DWI, PWI
and MRS can be used as reference techniques to diagnose
different brain malignancies with a greater level of
sensitivity and accuracy, by means of simple descriptive
statistics [19]; the major strength of our analysis is given by
the confirmatory role of PCA in determining which PWI,
DWI, and MRS MRI-derived metrics may be more
informative in the specific clinical setting of brain tumor in
adult patients.
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Fig. (4). Scattered boxplots of the most relevant indices identified at PCA. Scattered boxplots of the most relevant indices
identified at PCA, with data dispersion and minimum value/median value/maximum value/quartiles/inter-quartiles ranges concerning ADC
(A), Lip-Lac (B), CBV (C), CBF (D), and MTT (E) in the three pathological groups: NHL (red), wild-type GBM (blue), and single brain MET
(green); p-values among groups (Bonferroni corrected) are also reported on the top of each boxplot table.

The most used diffusion metric at MRI examination is
represented by ADC values [20-23], whose correlation
with tumor cellularity has been explored in several studies
over the years [24-28], although sometimes with some
controversial results [29, 30]. Highly cellular tissues, such
as aggressive brain lesions, typically show lower ADC
values. ADC has been proposed as a standalone tool for
tumor differentiation; for example, dysembryoplastic
neuroepithelial tumors in children display higher ADC
than more common pediatric tumors [31]. However,
results are inconsistent when using ADC to distinguish
tumor subgroups, such as between GBM subtypes [32] or
low-grade astrocytomas and oligodendrogliomas [33]. The
most established adult application remains identifying
primary CNS lymphoma, which consistently shows lower
ADC values than glial or metastatic lesions [23, 26, 33-35].
Our results, in line with this evidence [35], support the
central role of ADC measurements in differential diagnosis
of brain tumors, with PCA analysis revealing its major
contribution in the identification of CNS lymphomas

(namely, the tumor with the most marked restriction in
diffusion coefficients). Conversely, the lack of significance
for ADC in differentiating GBM from brain MET provides a
further contribution to understanding the role of diffusion
in this specific setting, helping to clarify some of the
conflicting findings reported in the scientific literature
[36, 37].

Angiogenesis is essential for tumor growth and spread;
MRI perfusion and vascular microstructure analysis aid in
both differential diagnosis and monitoring. Among PWI
techniques, including DSC, dynamic contrast enhanced
(DCE), and arterial spin labeling (ASL), DSC-PWI is the
most studied and widely used in clinical practice [24, 38].
DSC is based on the principle of susceptibility signal loss
on T2*w images during intravenous administration of
gadolinium-based contrast agent; signal intensity/time
curves are the final output of such progressive signal loss
and are translated into color maps, including MTT, CBF,
and CBV. DSC-PWI parameters, namely CBF and CBV
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maps, were demonstrated to outperform and be inter-
changeable in assessing tumor vascularity compared to
other perfusion parameters, which are generally more
discordant [38-42]. In particular, DSC perfusion curves in
high-grade glial lesions usually return very quickly close to
baseline, whereas perfusion curves in tumors with leaky
capillaries, such as metastases, do not have the same
trend. Our results confirm this finding, proposing a major
role for CBV and CBF parameters in distinguishing highly
proliferative lesions like GBM from metastases or CNS
lymphoma [43], and a minor supportive role in distin-
guishing between MET and NHL. Conversely, MTT has
been more frequently used as an indirect indicator of
deficient microvascular blood flow control in treatment-
resistant and recurrent brain tumors. In contrast, its role
in distinguishing high-grade brain tumors is less
accurately known and ancillary to CBF/CBV changes
[43-45]; however, these findings suggest that MTT
variations are consistent with CBF and CBF fluctuations,
moving in the same direction and providing additional
information on tumoral vascularity and hemodynamics.

Finally, MRS reveals the biochemical profile of patho-
logical brain tissues, indicating high cellular turnover,
disrupted neuronal homeostasis, and anaerobic meta-
bolism. Proton MRS is most commonly used, with
intermediate TE (144 ms) typically allowing identification
of key tumor metabolites. While both single- and multi-
voxel techniques are available, single voxel MRS is
preferred in brain tumors for its diagnostic adequacy and
shorter acquisition time [38, 46, 47]. Brain neoplasms
typically present with elevated Cho and decreased NAA, as
confirmed by several studies where the presence of
neoplastic lesions was indicated by an altered Cho/NAA
ratio at intermediate/long TE. Conversely, the potential for
MRS in distinguishing brain tumor types is more contro-
versial, with the most significant contribution for Lip-Lac
peak in CNS lymphoma identification; however, such
finding may be superimposable to the one observed in
different high-grade brain tumors with evidence of high
cell membrane turnover, such as glioblastoma (especially
when large necrotic areas are present) [48-50]. In our
cohort, in line with this last evidence, Lip-Lac evaluation
at intermediate TE was the only contributive MRS
parameter, useful in differentiating NHL from the other
two groups of brain tumors; no significant result emerged
for the other considered metabolite ratios. The same
applies to the Lip-Lac peak that fails in distinguishing
between GBM and MET, while it is known that MRS may
provide a more consistent contribution when performed in
peritumoral surrounding edema [51]; however, for this
purpose, MRS's role becomes particularly evident when
combined with other advanced MRI imaging modalities
[52].

5. LIMITATIONS

This study suffers from some limitations that must be
stated and discussed. The first one regards the retro-
spective monocentric design of the study, which does not
allow for further analysis and speculations on the role of
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advanced MRI techniques in the diagnosis of brain tumors.
Secondly, the sample size is somewhat limited, taking into
account the incidence of these pathologies in Western
countries; however, despite the limited body of collected
evidence, the sample has the merit of being very homo-
geneous, as all patients underwent the same compre-
hensive MRI examination. As a last consideration, the
presented results only apply to a specific clinical setting
(i.e., machine vendor, field strength, type of head coil, MRI
protocol with specific sequence type and parameters, etc.)
and can be somehow influenced by observers’ experience
at the moment of data collection; for this reason, the same
approach should be tested in different settings to
generalize its performance.

CONCLUSION

PCA statistical approach helps in reducing redundancy
and supporting the radiologist in focusing on MRI features
with the highest diagnostic impact; ultimately, this method
can facilitate the development of optimized imaging
protocols and improve clinical decision-making by refining
the interpretation of multiparametric MRI data in a stat-
istically robust manner. By means of PCA analysis, we
demonstrated how the combined use of DWI, DSC-PWI,
and MRS can assist the radiologist in an accurate pre-
operative differential diagnosis of the three main classes
of adult malignant intra-axial brain tumors, increasing the
diagnostic performance obtained with conventional MRI
alone. The most informative parameters deriving from this
preliminary study are represented by ADC values, MTT,
CBV, CBF, and Lip-Lac peak. These results strongly
suggest a potential role for a combined PCA-based
approach to multiparametric advanced MRI imaging, even
across different technical settings and potentially in
various clinical scenarios. However, further studies on
larger samples or involving different disease categories
are still needed to validate and generalize the presented
results; our medium- to long-term objective is to apply the
same approach to a larger sample of subjects, including
acquisitions obtained using different MRI systems or
imaging studies concerning lesions of various types that
may be relevant to the differential diagnosis of the most
common adult brain tumors.
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