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Abstract:

Purpose: This study aimed to investigate multivariate regional patterns for schizophrenia (SZ) classification, sex
differences, and brain age by utilizing structural MRI, demographics, and explainable artificial intelligence (AI).

Methods: Various AI models were employed, and the outperforming model was identified for SZ classification, sex
differences, and brain age predictions. For the SZ and sex classification tasks, support vector classifier (SVC), k-
nearest neighbor (KNN), and deep learning neural network (DL) models were compared. In the case of regression-
based brain age prediction, Lasso regression (LR), Ridge regression (RR), support vector regression (SVR), and DL
models were compared. For each regression or classification task, the optimal model was further integrated with the
Shapley additive explanations (SHAP), and significant multivariate brain regional patterns were identified.

Results:  Our  results  demonstrated  that  the  DL  model  outperformed  other  models  in  SZ  classification,  sex
differences, and brain age predictions. We then integrated outperforming DL model with SHAP, and this integrated
DL-SHAP  model  was  used  to  identify  the  individualized  multivariate  regional  patterns  associated  with  each
prediction. Using the DL-SHAP approach, we found that individuals with SZ had anatomical changes, particularly in
the left pallidum, left posterior insula, left hippocampus, and left putamen regions, and such changes associated with
SZ were different between female and male patients. Finally, we further applied the DL-SHAP method to brain age
prediction and suggested important brain regions related to aging in health controls (HC) and SZ processes.

Conclusion:  This  study  systematically  utilized  predictive  modeling  and  novel  explainable  AI  approaches  and
identified the complex multivariate brain regions involved with SZ classification, sex differences, and brain aging,
thereby  building  a  deeper  understanding  of  neurobiological  mechanisms  involved  in  the  disease,  offering  new
insights  into  future  SZ  diagnosis  and  treatments,  and  laying  the  foundation  for  the  development  of  precision
medicine.
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1. INTRODUCTION
Schizophrenia (SZ) is widely regarded as one of the most

debilitating health conditions affecting humanity [1-6], with
a lifetime prevalence of about 1% [7, 8]; it is known to affect
1 in 300 individuals [9]. Males and females are affected by
the disease differently [10-12]. SZ causes severe behavioral
dysfunctions,  like  hallucinations,  delusions,  and  cognitive
impairments,  in  individuals,  and  it  can  accelerate  brain
aging processes by introducing brain alterations [13-22]. In
contrast  to  the  significant  personal  and  socioeconomic
burden caused by SZ, it remains challenging to reach a com-
prehensive  understanding  [6].  Despite  extensive  research
and clinical efforts, effective personalized treatment options
for SZ are still lacking. Therefore, building a deeper under-
standing  of  SZ  mechanisms,  especially  important  multi-
variate  brain  regions  associated  with  SZ,  is  crucial  for
improving  diagnosis,  developing  more  effective  treatment
strategies, and promoting precision medicine efforts.

Integrating  magnetic  resonance  imaging  (MRI)  of  the
brain  with  machine  learning/artificial  intelligence  (ML/AI)
has dominated exploratory research lately [9, 15, 23-31] for
SZ classification and age predictions. Existing studies have
primarily focused on predictive modeling, but the underlying
neurobiological  regional  patterns  associated  with  such
predictions  are  poorly  understood yet.  Prior  research exa-
mining  which  brain  regions  are  closely  related  to  SZ  has
primarily used a univariate approach, neglecting the multi-
variate associations between regions. For example, a study
[32]  demonstrated a  correlation between the left  putamen
volume  and  the  delusion  evaluation  in  SZ.  However,  eva-
luating the association between individual brain regions and
SZ could be problematic, because this method ignored the
influence  of  activities  from  other  brain  regions.  Theo-
retically,  putamen could have no impact on SZ, and/or the
symptom could be due to alterations in other brain regions.
Different  brain  regions  work  in  a  collaborative  way  and
various regions have been implicated to  be involved in SZ
mechanisms  [33-38].  Thus,  it  is  critical  to  systematically
investigate the associations between the brain regions and
SZ mechanisms in  a  multivariate  way,  thereby  uncovering
the complex neurobiological mechanisms of this disorder. In
this study, we proposed to evaluate the association between
a brain region and SZ while accounting for the contributions
of other regions. In this way, we can be more confident of
the association identified between the target region and SZ
progression.

This  study  sought  to  investigate  the  underlying  multi-
variate  regional  patterns  associated  with  neurobiological
mechanisms,  focusing  on  SZ  vs.  control  classification,  as
well  as  male  vs.  female  classification  and  brain  age  pre-
dictions  in  SZ  using  a  large  sample  of  MRI  and  demo-
graphic data. For this, we built various AI models for these
predictions  and  integrated  the  outperforming  model  with
the  feature  importance  method  to  explain/interpret  the
predictions  and  identify  the  corresponding  multivariate
regional  patterns.  Since  individuals  with  SZ  have  been
reported to exhibit brain regional changes [23, 39-44], we
hypothesized that our explainable AI approach can predict
SZ  vs.  control  classification  and  identify  the  multivariate
regional  contributors  to  such  prediction.  Since  male  vs.
female disparity has been suggested in SZ [12, 45, 46], we
hypothesized  that  our  explainable  AI-based  modeling  can
characterize the neurostructural correlates in a multivariate
fashion.  Since  some  studies  have  suggested  the  effect  of
age  on  SZ  [14,  47],  we  further  tested  this  using  our
explainable AI approach. With the multivariate relationship
between brain structure and SZ identified, our results could
promote the understanding of the underlying mechanisms
of SZ. Patients with obvious alterations in important brain
hubs identified in our study should consider the risk of SZ
and undergo further testing. In addition, a future direction
of  therapeutic  intervention  could  be  slowing  down  the
alteration in the important brain hubs associated with SZ,
as indicated by our results.

2. MATERIALS AND METHODS

2.1. Dataset
The  dataset  (N  =  368,  age:  18-66  years  old;  Table  1)

was  obtained  from  Schizconnect  [48,  49]  (www.schiz
connect.org), with centralization provided by the Center for
Biomedical  Research  Excellence  (COBRE)  [50],  Neuro-
morphometry by Computer Algorithm Chicago (NMorphCH)
[51],  and  function  Biomedical  Informatics  Research  Net-
work (fBIRN) PhaseII__0010 [52].  We only  included parti-
cipants categorized as SZ strict and healthy controls and for
whom  brain  T1-weighted  MR  images  and  age  and  sex
information  were  available.  Out  of  368  subjects,  165  (42
females)  subjects  belonged  to  the  SZ  group  and  203  (79
females) were healthy controls (HC). We utilized the brain
T1-weighted  MR  images  and  extracted  brain  volumes
corresponding to 145 anatomical regions of interest (ROIs)
using  the  multi-atlas  region  segmentation  utilizing  ense-

Published: May 05, 2025

https://creativecommons.org/licenses/by/4.0/legalcode
mailto:gchand@wustl.edu
mailto:miaoh@wustl.edu
http://dx.doi.org/10.2174/0118744400379054250428094005
http://crossmark.crossref.org/dialog/?doi=10.2174/0118744400379054250428094005&domain=pdf
https://creativecommons.org/licenses/by/4.0/
mailto:reprints@benthamscience.net
http://www.schizconnect.org
http://www.schizconnect.org


Characterizing Multivariate Regional Hubs Using Explainable AI 3

mbles of registration algorithms and parameters and locally
optimal  atlas selection (MUSE) [53].  These brain volumes
were  further  corrected  for  the  site  and  covariate  effects
using  the  harmonization  technique  [4,  54].  Using  this
harmonization  approach,  the  sex  and  age  effects  were
corrected for SZ classification, age effects were corrected
for  sex  classification,  and  sex  effects  were  corrected  for
brain  age  prediction.  These  harmonized  brain  regional
volumes corresponding to 145 ROIs were utilized as inputs
for the ML/DL models. The 145 ROIs included a wide range
of  tissue  types,  including  gray  matter,  white  matter,
cerebrospinal  fluid/ventricles,  and  brain  stem.
Table 1. Demographic distribution of participants.

Dataset
Healthy Controls

(HC)
Schizophrenia (SZ)

Patients Total
Male Female Male Female

COBRE 67 27 61 14 169
NMorphCH 21 22 30 13 86
fBIRNPhase11 36 30 32 15 113
Total 124 79 123 42 368

2.2.  SZ-related Classification and Regression Tasks
and associated AI Models

We evaluated 3 SZ-related tasks, including two classi-
fication tasks and one regression task. The classification
tasks included classifying SZ vs. HC and classifying male
vs.  female  sex  within  the  SZ  group  and  HC  group.  We
employed  traditional  ML  models,  including  K-nearest
neighbor  (KNN)  [36,  37]  and  support  vector  classifier
(SVC) [38, 39], along with a deep learning neural networks
(DL)  model  for  classification  tasks.  The  regression  task
estimated  the  brain  age  of  SZ  subjects.  We  employed
traditional  ML  models,  including  Lasso  regression  (LR)
[41,  42],  Ridge  regression  (RR)  [43,  44],  and  support
vector regression (SVR) [55], as well as the DL model for
the regression task.

The  hyperparameters  of  traditional  ML  models  were
tuned with a grid search procedure, and the optimal hyper-
parameters were selected for each model and each classi-
fication or regression task. For KNN, the optimal number of
neighbors  was  chosen  from  a  range  of  1-100  with  an
increment of 2. For SVC, the gamma value was chosen from
-12 to -2 with an increment of 1. In addition, the Gaussian/
radial  basis  function  (RBF)  kernel  was  employed,  and  we
evaluated  C  values  ranging  from  0.2  to  2.6  with  an
increment of 0.2. For LR and RR, the optimal value for the
alpha parameter was selected from the bounds 0.15-0.4 and
50-250,  respectively.  For  SVR,  an  RBF  kernel  was  emp-
loyed,  and  the  optimal  values  of  gamma,  epsilon,  and  c-
values hyperparameters were selected from a range of -12
to -2 with an increment of 1, -7 to 3 with an increment of 1,
and -5 to 4 with an increment of 1, respectively. To decide
the optimal value, for each machine learning (ML) model,
each hyperparameter was assigned a set of values, and all
possible  combinations  were  evaluated  to  identify  the
optimal configuration. The optimal performance was deter-
mined using the mean absolute error (MAE) loss  function

for  the  regression  task  and  the  log  loss  function  for  the
classification task, with the lowest loss indicating the best-
performing model.

We  evaluated  a  DL  model  consisting  of  five  dense
hidden layers with a decreasing number of units in order of
200,  160,  120,  80,  and 40  (Fig.  1).  Each dense  layer  was
followed  by  a  rectified  linear  unit  (ReLU)  activation
function, a batch normalization layer, and a dropout layer
with  a  0.1  dropout  rate  to  stabilize  the  model  and  acce-
lerate the training process [56, 57]. The final output layer
comprised  a  single-unit  dense  layer  accompanied  by  a
linear  activation  function  for  the  regression  task  and  a
sigmoid activation function for the classification task. This
architecture was chosen as it yielded the lowest loss (MAE
loss  for  the  regression  task  and  BCE  loss  for  the
classification  task)  for  both  regression  and  classification
tasks.

To  ensure  the  robustness  of  our  models,  a  10-fold
stratified cross-validation (CV) strategy was implemented for
classification  tasks,  and  a  10-fold  cross-validation  (CV)
strategy  was  implemented  for  the  regression  task,  where
data were split into training and test sets. The training set
was further divided into training and validation sets, where
the validation set accounted for 10% of the original training
set,  to  monitor  the  training  loss  during  the  CV-based
iterative  training.  CV is  critically  acclaimed for  enhancing
model generalization, mitigating overfitting, and providing a
more  robust  estimation  of  the  model’s  performance  on
unseen  data  [58].  The  outcomes  reported  here  were
obtained from the partitioned test set, which was not used in
training  the  models.  The  traditional  ML  models  were
implemented in Python using the Python library Scikit-learn
[59] and trained with the default  settings.  To train the DL
model,  the  binary  cross  entropy  (BCE)  loss  function  was
employed  for  classification,  and  the  mean  absolute  error
(MAE) loss function was utilized for regression tasks. After
hyperparameter tuning, we selected 500 training epochs, 64
batch sizes, a 0.001 learning rate, and an ADAM optimizer.
The  results  for  the  DL model  were  reported  after  running
the model multiple times (i.e., five times here) and averaging
the  results  over  runs  for  robustness  purposes.  For
classification,  a  soft  voting  approach was  employed to  get
averaged  outputs.  The  DL  model  was  implemented  using
Python libraries TensorFlow [60] and Keras [61].

Various  AI  models  were  compared  for  each  classifi-
cation or regression task and the outperforming model (i.e.,
the DL model in our study) was integrated with the Shapley
additive explanation (SHAP) [62],  referred to as DL-SHAP
model  (Fig.  1),  to  explain  or  interpret  the  model  outputs,
thereby identifying the significant multivariate regional con-
tributions  to  each  classification  or  regression  task.  SHAP
approach was utilized in this study because it is a state-of-
the-art strategy for the interpretability or explainability of
complex  models  and  it  satisfies  all  three  essential  pro-
perties,  particularly  local  accuracy,  missingness,  and
consistency,  which  are  critical  for  the  interpretability  or
explainability and the accuracy of complex AI models. SHAP
comprises  model-specific  approximations,  integrates  the
strengths of all other additive feature attribution methods,
and outperforms other methods.
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Fig. (1). Schematic diagram of DL-SHAP model.
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This  integration  concept  was  originally  proposed  to
investigate multivariate associations between brain regions
and cognition in the context of Alzheimer's disease [63], and
here, we intended to apply it to the schizophrenia domain. In
DL-SHAP, the SHAP value for an input feature is computed
by  considering  the  contribution  it  makes  to  the  final
prediction  of  a  participant.  This  contribution  can  be
determined  by  observing  the  impact  on  the  final  output
when the feature is added and when it is removed from the
input.  The  SHAP  value  was  calculated  with  the  Python
package  SHAP.  A  higher  absolute  SHAP  value  indicates
greater significance of the feature in obtaining the output. In
our study, a higher absolute SHAP value associated with an
ROI  indicated  a  stronger  association  between  that  brain
region  and  the  related  prediction  of  a  participant.  To
aggregate  the  value  across  participants  and  evaluate  the
feature  importance  at  the  group  level,  we  calculated  the
average  absolute  SHAP  value  over  all  participants,  and
regions with higher average absolute SHAP values over all
participants  within  a  group were believed to  be important
for  the prediction results  for  that  group of  participants.  It
should be noted that the feature significance values with DL-
SHAP across the models might vary as the contribution of
the features to these models might change due to variations
in  architecture,  weights,  and the  complexity  of  the  model.
Hence,  the  feature  significance  values  with  DL-SHAP  are
best used for understanding relative feature con-tributions
within  the  same  model,  rather  than  for  direct  comparison
across different models [62].

For  assessing  the  classification  model,  we  used  micro-
averaged  accuracy,  precision,  recall,  specificity,  and  F1-
score as evaluation metrics. It is noteworthy that reporting
multiple evaluation metrics can provide deeper insights into
the  models’  performance.  For  regression  tasks,  we  com-
puted  the  Spearman  correlation  between  the  actual  and
predicted  brain  age,  and  the  related  p-values  were  esti-
mated to evaluate the model’s performance. Cohen’s d-effect
sizes  were  computed  from  DL-SHAP  values  to  examine
group  differences.  Group-wise  DL-SHAP  regional  features
and  DL-SHAP  group  differences  in  terms  of  Cohen’s  d
regional values were visualized using MRIcroGL [64]. Only
ROIs  with  p-values  less  than  0.05,  indicating  statistical
significance,  were  considered.
3. RESULTS

For the SZ vs. HC classification task, we found that the
DL model  outperformed  (loss  =  0.206,  accuracy  =  0.981,
precision  =  0.998,  recall  =  0.970,  F1-score  =  0.979,
specificity  = 0.990)  all  other  traditional  ML models  in  all
evaluation metrics. The results of HC/SZ classification using
various ML and DL models are listed in Table 2.

We  then  characterized  the  multivariate  relationships
between  regional  volumetric  measures  and  HC/SZ
classification using the DL-SHAP model. We identified the
important  brain  regions  for  HC  and  SZ  groups  and  their
classification  task.  In  the  HC  group,  the  top  important
regions  were  the  left  pallidum,  left  posterior  insula,  left
hippocampus,  fornix  left,  and left  putamen,  among others
(Fig.  2a).  In  the  SZ  group,  the  top  important  regions
identified were the left pallidum, left posterior insula, left
hippocampus,  right  pallidum,  and  left  putamen,  among
others  (Fig.  2b).  SHAP  values  at  individual  participant
levels  associated  with  the  top  important  regions  are
visualized  in  Fig.  (S1),  which  demonstrated  the
relationships  between  the  volumetric  measurements  of
individual ROI and SZ. For example, a larger pallidum was
associated with a higher likelihood of being an SZ patient,
and a smaller insula and hippocampus were associated with
a  higher  likelihood  of  being  an  SZ  patient.  We  then
computed Cohen’s d between HC and SZ groups using DL-
SHAP regional features and found a few regions (Fig. 2c)
that were not key hubs in each group.

Sex classification was performed within the HC group
and the SZ group, respectively. Our results indicated that
the  DL  model  outperformed  (SZ  group:  loss  =  0.188,
accuracy = 0.994, precision = 0.992, recall = 1, F1-score =
0.996, specificity = 0.976; HC group: loss = 0.162, accuracy
=  0.995,  precision  =  1.000,  recall  =  0.992,  F1-score  =
0.996, specificity = 1.000) all other traditional ML models
corresponding to all evaluation metrics. The results of sex
classification using various ML and DL models are listed in
Tables  3  and  4.  We  further  investigated  the  multivariate
relationships  between  regional  volumetric  measures  and
sex classification. The top important regions identified for
males  in  the  HC group  were  the  left  temporal  pole,  right
posterior insula, left ventral DC, left hippocampus, and left
entorhinal area (Fig. 3a); for males in the SZ group, the top
important  regions  identified  were  the  left  posterior
cingulate gyrus,  left  cuneus, right posterior orbital  gyrus,
left  inferior  temporal  gyrus,  and  right  inferior  temporal
gyrus  (Fig.  3b);  for  females  in  the  HC  group,  the  top
important regions identified were the left temporal pole, left
ventral DC, left entorhinal area, right posterior insula, and
right occipital lobe white matter (Fig. 3c); and for females
in the SZ group, the top important regions identified were
left posterior cingulate gyrus, corpus callosum, left inferior
temporal gyrus, fourth ventricle, and right posterior orbital
gyrus (Fig. 3d). We compared sex differences within each
HC and SZ group with Cohen’s d analysis (HC: Fig. 3e; SZ:
Fig. 3f).

Table 2. SZ vs. HC classification. The test set performance of models. The optimal value for each evaluation
metric is  marked in bold.  KNN: K-nearest  neighborhood;  SVC: Support  vector classifier;  DL:  Deep learning
neural networks.

Model Accuracy Precision Recall F1-score Specificity Loss

KNN 0.601 0.615 0.291 0.395 0.852 13.810
SVC 0.652 0.653 0.479 0.552 0.793 11.526
DL 0.981 0.988 0.970 0.979 0.990 0.206
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Fig. (2). SZ vs. HC diagnosis classification via DL-SHAP. (a) Significant brain regions in the HC group. The average absolute SHAP
values of each brain region in the HC population are plotted. The color bar represents the average absolute SHAP value. (b) Significant
brain regions in the SZ group. The average absolute SHAP values of each brain region in the HC population are plotted. The color bar
represents the average absolute SHAP value. (c) The Cohen’s d analysis comparing HC and SZ brains. We compared each ROI in HC and
SZ brains by calculating the Cohen’s d using the SHAP value of each participant in two populations, and the absolute effect size is plotted.
The color bar represents the absolute value of effect size.

Table 3. Sex-wise classification within the SZ group. The test set performance of classification models. The
optimal value for each evaluation is marked in bold.

Model Accuracy Precision Recall F1-score Specificity Loss

KNN 0.800 0.836 0.911 0.871 0.476 6.869
SVC 0.824 0.851 0.927 0.887 0.524 2.390
DL 0.994 0.992 1.000 0.996 0.976 0.188

Table 4. Sex-wise classification within the HC group. The test set performance of models. The optimal value for
each evaluation metric is marked in bold.

Model Accuracy Precision Recall F1-score Specificity Loss

KNN 0.778 0.801 0.847 0.823 0.671 7.639
SVC 0.749 0.774 0.831 0.801 0.620 4.218
DL 0.995 1.000 0.992 0.996 1.000 0.162
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Fig. (3). Sex-wise classification within HC and SZ groups via DL-SHAP model. (a) Significant brain regions in males within the HC
group for sex classification. The average absolute SHAP values of each brain region of male participants in the HC population are plotted.
The color bar represents the average absolute SHAP value. (b) Significant brain regions in males for sex classification within the SZ
group.  The  average  absolute  SHAP values  of  each  brain  region  of  male  participants  in  the  SZ population  are  plotted.  The  color  bar
represents the average absolute SHAP value. (c)  Significant brain regions in females for sex classification within the HC group. The
average absolute SHAP values of each brain region of female participants in the HC population are plotted. The color bar represents the
average absolute SHAP value. (d) Significant brain regions in females within the SZ group. The average absolute SHAP values of each
brain region of  female participants  in  the SZ population are plotted.  The color  bar represents  the average absolute SHAP value.  (e)
Cohen’s d analysis (absolute value) comparing male and female brains in the HC group. We compared each ROI in male and female brains
in the HC group by calculating Cohen’s d using the SHAP value of each participant in two populations, and the absolute effect size is
plotted. (f) Cohen’s d analysis (absolute value) comparing male and female brains in the SZ group. We compared each ROI in male and
female brains in the SZ group by calculating Cohen’s d using the SHAP value of each participant in two populations, and the absolute
effect size is plotted.
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Finally,  we  found  that  the  DL  model  outperformed  all
other traditional ML models in all evaluation metrics with a
loss of 3.96 and a correlation of 0.92 (p = 7.9E-150) between
the actual and predicted brain age (Fig. 4a). In contrast, the
traditional  ML  models  yielded  a  loss  of  around  7  and  a
correlation  lower  than  0.7.  The  results  of  brain  age  pre-
diction using various ML and DL models are listed in Table
5. The multivariate relationships between the regional mea-
sures and brain age in SZ were also investigated using DL-

SHAP. The top important regions identified for the HC group
were  the  right  superior  frontal  gyrus,  left  putamen,  left
supplementary motor cortex, right entorhinal area, and right
subcallosal area, and the top important regions identified for
the  SZ  group  were  the  right  superior  frontal  gyrus,  left
putamen,  left  pallidum,  right  subcallosal  area,  and  right
entorhinal area (Fig.  4b-d).  Fig.  (4b)  shows the Cohen’s d
effect size differences between HC and SZ groups using DL-
SHAP regional features.

Table 5. Brain age prediction. The test set performance of regression models in terms of MAE training loss,
Spearman’s  correlation  between  actual  and  predicted  brain  age,  and  p-values.  The  optimal  value  for  each
evaluation  metric  is  marked  in  bold.  LR:  Lasso  regression;  RR:  Ridge  regression;  SVR:  Support  vector
regression;  DL:  Deep  learning  neural  networks.

Model MAE Loss Spearman’s Correlation p-value

LR 6.91 0.67 5.84E-49
RR 6.97 0.68 2.66E-50
SVR 7.53 0.60 1.03E-38
DL 3.97 0.92 7.9E-150

Fig. (4). Brain age prediction via the DL-SHAP model. (a) The correlation between actual and predicted brain age. (b) Cohen’s d
analysis (absolute value) comparing HC and SZ brains. We compared each ROI in HC and SZ brains by calculating Cohen’s d using the
SHAP value of each participant in two populations, and the absolute effect size is plotted. The color bar represents the absolute value of
effect size. (c) The significant brain regions in the HC group. The average absolute SHAP values of each brain region in the HC population
are plotted. The color bar represents the average absolute SHAP value. (d) The significant brain regions in the SZ group. The average
absolute SHAP values of each brain region in the HC population are plotted. The color bar represents the average absolute SHAP value.
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4. DISCUSSION
This study systematically investigated the hierarchy of

multivariate brain regions associated with SZ mechanisms,
particularly  HC/SZ  classification,  sex  classification,  and
brain  age  prediction.  We  found  that  the  DL  model  out-
performed the  rest  of  the  ML models  in  all  classification-
and  regression-based  predictions,  and  this  finding  was
broadly  consistent  with  previous  studies  [56,  57,  65-68]
suggesting the  superior  performance of  the  DL model  for
classification and brain age predictions in various disorders,
including  SZ.  This  superior  performance  of  the  DL model
might be due to being more complex compared to the rest
of  the  ML  models,  such  that  it  can  capture  the  complex
brain  volumetric  changes  associated  with  HC/SZ,  gender,
and age. Such superior performance of DL was not limited
to just SZ-related tasks, but it was found to be generalizable
to different image modalities and diseases [69-73], sugges-
ting  the  important  role  DL  could  play  in  future  medical
science development. The DL model proved to be a reliable
model with decent performance for investigating the multi-
variate  relationships  between  regional  brain  biomarkers
and  different  aspects  of  SZ.  We  then  integrated  the
outperforming DL model with SHAP, collectively referred to
as  DL-SHAP.  The  integrated  DL-SHAP  explainable  AI
approach  uncovered  the  individuals  with  SZ  to  have
anatomical  changes,  particularly  in  the  left  pallidum,  left
posterior  insula,  left  hippocampus,  and  left  putamen
regions,  and  such  brain  alterations  associated  with  SZ
showed  a  different  pattern  in  female  and  male  patients.

We found important brain regions in terms of DL-SHAP
regional features for HC and SZ classification tasks, sugges-
ting that these regions undergo structural changes with the
development  of  SZ.  The  identified  key  brain  regions  have
been  found  to  largely  overlap  with  existing  literature
[74-79]. For example, subcortical structural abnormalities in
SZ have been previously studied and the left pallidum and
left putamen volumetric increases have been reported in SZ
[76]. Our results have shown larger pallidum and putamen
to  be  associated  with  a  higher  likelihood  of  being  an  SZ
patient.  The  putamen  alterations  might  contribute  to  the
cognitive symptoms of SZ, such as auditory verbal halluci-
nations  and  cognitive  dysfunction  [80,  81].  The  pallidum
alterations might be related to the negative symptoms of SZ,
given  their  role  in  reward  and  motivation  [82].  The
development of therapeutic treatments could consider slow-
ing  down  or  reverting  the  changes  associated  with  those
regions,  which  might  reduce  the  SZ-related  symptoms.
Moreover, hippocampus and insula abnormalities have also
been  reported  in  SZ  [77,  78].  Our  results  showed  smaller
insula  and  hippocampus  to  be  associated  with  a  higher
likelihood  of  being  an  SZ  patient.  The  broad  agreement
between our findings and the existing literature supports the
validity  of  our  results,  but  we  innovatively  identified  the
hierarchy  of  multivariate  regions  by  considering  their
interactions using our novel DL-SHAP method for SZ vs. HC
classification.

Previous studies have shown the susceptibility of males
and  females  to  SZ  to  be  different  [12,  45,  46].  We  have
extended these findings by examining sex differences in a
fine-grained  and  multivariate  regional  manner.  A  general

consensus in the field is that SZ is associated with reduced
frontal  and temporal  volumes in  males  than females  [46].
We  identified  the  left  inferior  temporal  gyrus  and  right
posterior orbital gyrus to be important for sex classification
in  both  male  and  female  patients.  In  addition,  similar  to
previous studies [83],  we also identified the left  posterior
cingulate  gyrus  to  be  an  important  region  for  sex
classification. Finally, ventricles and corpus callosum were
shown to be different between male and female SZ patients
[46]. In our study, they were identified as important regions
for  female  SZ  patients,  but  not  as  important  for  male  SZ
patients.  While  previous  studies  have  shown  that  certain
brain regions are affected differently in males and females
with  SZ,  our  study  advanced  this  understanding  by
demonstrating  that  the  importance  of  the  same  brain
regions  for  sex  classification  varies  between  males  and
females, and that different brain regions contribute to sex
classification in male and female SZ patients. These results
and  existing  literature  collectively  suggest  the  complex
interplay  between  sex  and  SZ,  and  such  complex  neuro-
biological regional patterns could be innovatively identified
using  our  explainable  AI  approach  in  a  multivariate  way.
The sex difference in SZ could arise from a combination of
biological  and  environmental  factors.  For  example,  the
hormonal  difference,  particularly  the  estrogen  level  in
women, could play a role in sex differences in SZ [45].  In
addition, environmental factors could also play a big role, as
the cultural and social expectations are different for males
and  females,  which  could  also  shape  brain  structure
development  and  alterations  [84].

Finally, for brain age prediction, our findings regarding
significant brain regions also overlapped with the existing
literature. For instance, prior reports [47, 85] suggest that
SZ has  a  strong impact  on  the  aging  process  in  the  right
superior  frontal  gyrus  and putamen.  While  an increase in
the  volume  of  the  entorhinal  area  was  shown  to  be
associated with SZ [86], it is new that our study explicitly
demonstrated its aging process to be closely related to SZ.
These  findings  and  existing  literature  taken  together
suggested  the  impact  of  aging  in  HC  and  SZ  processes.
Brain age predictions could be used as a biomarker for SZ
diagnosis. A study [15] showed SZ patients to deviate from
the normal aging trajectory, as the predicted age was much
higher than the actual chronological age. In reality, a quick
computation  of  brain  age  and  its  deviation  from  the
chronological  age  could  be  used  as  a  risk  factor  for  SZ.

One  limitation  of  our  study  is  that  there  are  different
subtypes  of  SZ  [24,  87-91],  but  we  could  not  investigate
multivariate relationships between different brain regions
and different subtypes due to the limitation of sample size.
Future  studies  may  consider  employing  a  larger  dataset,
grouping  participants  by  their  SZ  subtypes,  and  investi-
gating the multivariate relationships between regional brain
biomarkers and different SZ subtypes. Another limitation of
our  study  was  associated  with  the  dataset.  We  observed
that although significant efforts have been made to increase
dataset sizes, an imbalance in the sex ratio persists. Given
the sex difference in SZ, it would be important to consider
including  more  female  participants  in  the  data  collection
plan in the future. Another limitation involved the unavail-
ability of clinical variables, such as SZ symptoms, duration
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of illness, and medication status, in this publicly available
neuroimaging dataset. Thus, future studies should focus on
examining  those  clinical  measures  in  the  context  of  the
proposed  explainable  AI  approaches  and  neuroimaging
data. Also, this study focused on a single-session visit, not
providing  insights  into  how the  multivariate  relationships
between  brain  structural  alterations  and  SZ  change  with
disease progression.

CONCLUSION
In conclusion, in this work, we utilized a range of ML/DL

models  to  systematically  investigate  SZ  neurobiological
mechanisms, focusing on SZ classification, sex differences,
and  brain  age  using  MRI  and  demographic  data.  The  DL
model  outperformed  other  models  in  all  classification  and
regression  tasks.  Our  integrated  novel  DL-SHAP  method
further  provided  valuable  insights  into  the  dominant
multivariate  regional  brain  hubs  associated  with  SZ
diagnosis, sex-based differences, and brain age prediction.
The  findings  collectively  contributed  to  a  deeper  under-
standing  of  the  underlying  neurobiological  mechanisms  of
SZ, offering new perspectives that could aid in diagnostic,
prognostic, and therapeutic strategies.

Future studies should consider extending our results and
evaluating  how  such  multivariate  relationships  between
brain alterations and SZ progression change over time and
vary with different SZ subtypes, as well as studying clinical
measures. Building a dataset with a more balanced sex ratio
could  also  be  an  important  goal  for  the  entire  field.  This
study is  expected to serve as the foundation for extending
these  explainable  AI  approaches  to  other  neuroimaging
modalities,  like  fMRI,  PET,  EEG,  etc.,  to  achieve  a  multi-
factorial  holistic  understanding  of  SZ  and  other  related
disorders.
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